Počet záznamů: 1

Smooth bifurcation branches of solutions for a Signorini problem

  1. 1.
    0354842 - MU-W 2011 RIV GB eng J - Článek v odborném periodiku
    Eisner, J. - Kučera, Milan - Recke, L.
    Smooth bifurcation branches of solutions for a Signorini problem.
    Nonlinear Analysis: Theory, Methods & Applications. Roč. 74, č. 5 (2011), s. 1853-1877 ISSN 0362-546X
    Grant CEP: GA AV ČR IAA100190805
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: smooth bifurcation * Signorini problem * variational inequality
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 1.536, rok: 2011
    http://www.sciencedirect.com/science/article/pii/S0362546X10007741

    We study a bifurcation problem for the equation Δu+λu+g(λ,u)u=0 on a rectangle with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neumann) boundary conditions on the rest of the boundary. Here is the bifurcation parameter, and g is a small perturbation. We prove, under certain assumptions concerning an eigenfunction u0 corresponding to an eigenvalue λ0 of the linearized equation with the same nonlinear boundary conditions, the existence of a local smooth branch of nontrivial solutions bifurcating from the trivial solutions at λ0 in the direction of u0. The contact sets of these nontrivial solutions are intervals which change smoothly along the branch. The main tool of the proof is a local equivalence of the unilateral BVP to a system consisting of a corresponding classical BVP and of two scalar equations. To this system classical Crandall–Rabinowitz type local bifurcation techniques (scaling and Implicit Function Theorem) are applied.
    Trvalý link: http://hdl.handle.net/11104/0193755
    Název souboruStaženoVelikostKomentářVerzePřístup
    Kucera.pdf2466.2 KBVydavatelský postprintvyžádat