Počet záznamů: 1

Dynamic Classifier Aggregation using Fuzzy Integral with Interaction-Sensitive Fuzzy Measure

  1. 1.
    0351614 - UIVT-O 2011 RIV US eng C - Konferenční příspěvek (zahraniční konf.)
    Štefka, David - Holeňa, Martin
    Dynamic Classifier Aggregation using Fuzzy Integral with Interaction-Sensitive Fuzzy Measure.
    Proceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications. Los Alamitos: IEEE, 2010 - (Hassanien, A.; Abraham, A.; Marcelloni, F.; Hagras, H.; Antonelli, M.; Hong, T.), s. 225-230. ISBN 978-1-4244-8135-4.
    [ISDA 2010. International Conference on Intelligent Systems Design and Applications /10./. Cairo (EG), 29.11.2010-01.12.2010]
    Grant CEP: GA MŠk ME 949; GA ČR GA201/08/0802
    Výzkumný záměr: CEZ:AV0Z10300504
    Klíčová slova: dynamic classifier combining * fuzzy integral * Choquet integral * fuzzy measure
    Kód oboru RIV: IN - Informatika

    In classifier combining, predictions of several classifiers are aggregated into a single prediction in order to improve the classification quality. Among others, fuzzy integrals are commonly used as aggregation operators. Usually, Sugeno lambda-measure is used as the fuzzy measure of the integral. However, interaction between the classifiers in the team (diversity), an important property in classifier combining, cannot be modeled by such fuzzy measure. In this paper, we present an interaction-sensitive fuzzy measure (ISFM), which can incorporate the diversity of the team into the aggregation process. Experimental results on 27 datasets show that the Choquet integral w.r.t. the ISFM outperforms the Choquet integral w.r.t. the Sugeno-lambda measure.
    Trvalý link: http://hdl.handle.net/11104/0191326
    Název souboruStaženoVelikostKomentářVerzePřístup
    a0351614.pdf0200.1 KBVydavatelský postprintvyžádat