Počet záznamů: 1

Phase transitions with interfacial energy: convexity conditions and the existence of minimizers

  1. 1.
    0349641 - MU-W 2011 RIV AT eng C - Konferenční příspěvek (zahraniční konf.)
    Šilhavý, Miroslav
    Phase transitions with interfacial energy: convexity conditions and the existence of minimizers.
    Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. Wien: Springer, 2010 - (Schröder, J.; Neff, P.), s. 177-240. CISM Courses and Lectures, vol.156. ISBN 978-3-7091-0173-5.
    [CISM Course on Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. Udine (IT), 24.09.2007-28.09.2007]
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: phase intefaces * interface quasiconvexity * Eshelby tensor * rectifiable current * semiellipticity
    Kód oboru RIV: BA - Obecná matematika
    http://link.springer.com/chapter/10.1007%2F978-3-7091-0174-2_6

    The article presents a variational theory of sharp phase interfaces bearing a deformation dependent energy. The theory involves both the standard and Eshelby stresses. The constitutive theory is outlined including the symmetry considerations and some particular cases. The existence of phase equilibria is proved based on appropriate convexity properties of the interfacial energy. Some generalization of the convexity properties is given and a relationship established to the semiellipticity condition from the theory of parametric integrals over rectifiable currents.
    Trvalý link: http://hdl.handle.net/11104/0189825