Počet záznamů: 1

Convergence of variational eigenvalues and eigenfunctions to the Dirichlet problem for the p-Laplacian in domains with fine-grained boundary

  1. 1.
    0349633 - MU-W 2011 RIV GB eng J - Článek v odborném periodiku
    Drábek, P. - Namlyeyeva, Yu. - Nečasová, Šárka
    Convergence of variational eigenvalues and eigenfunctions to the Dirichlet problem for the p-Laplacian in domains with fine-grained boundary.
    Proceedings of the Royal Society of Edinburgh. A - Mathematics. Roč. 140, č. 3 (2010), s. 573-596 ISSN 0308-2105
    Grant CEP: GA ČR GA201/05/0005; GA MŠk LC06052
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: perforated domains * homogenization
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 0.669, rok: 2010
    http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7782353&fileId=S0308210507001035

    We study the problem of the homogenization of Dirichlet eigenvalue problems for the p-Laplace operator in a sequence of perforated domains with fine-grained boundary. Using the asymptotic expansion method, we derive the homogenized problem for the new equation with an additional term of capacity type. Moreover, we show that a sequence of eigenvalues for the problem in perforated domains converges to the corresponding critical levels of the homogenized problem.
    Trvalý link: http://hdl.handle.net/11104/0189819
    Název souboruStaženoVelikostKomentářVerzePřístup
    Necasova4.pdf1236.5 KBVydavatelský postprintvyžádat