Počet záznamů: 1

New approach to the incompressible Maxwell–Boussinesq approximation: Existence, uniqueness and shape sensitivity

  1. 1.
    0349631 - MU-W 2011 RIV US eng J - Článek v odborném periodiku
    Consiglieri, L. - Nečasová, Šárka - Sokolowski, J.
    New approach to the incompressible Maxwell–Boussinesq approximation: Existence, uniqueness and shape sensitivity.
    Journal of Differential Equations. Roč. 249, č. 12 (2010), s. 3052-3080 ISSN 0022-0396
    Grant CEP: GA AV ČR IAA100190804; GA MŠk LC06052
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: magnetohydrodynamic flows * existence * uniqueness * shape sensitivity
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 1.261, rok: 2010
    http://www.sciencedirect.com/science/article/pii/S0022039610003669

    The Boussinesq approximation to the Fourier–Navier–Stokes (F–N–S) flows under the electromagnetic field is considered. Such a model is the so-called Maxwell–Boussinesq approximation. We propose a new approach to the problem. We prove the existence and uniqueness of weak solutions to the variational formulation of the model. Some further regularity in W1,2+δ, δ>0, is obtained for the weak solutions. The shape sensitivity analysis by the boundary variations technique is performed for the weak solutions. As a result, the existence of the strong material derivatives for the weak solutions of the problem is shown. The result can be used to establish the shape differentiability for a broad class of shape functionals for the models of Fourier–Navier–Stokes flows under the electromagnetic field.
    Trvalý link: http://hdl.handle.net/11104/0189817
    Název souboruStaženoVelikostKomentářVerzePřístup
    Necasova.pdf2303.2 KBVydavatelský postprintvyžádat