Počet záznamů: 1

Weighted estimates for the averaging integral operator and reverse Hölder inequalities

  1. 1.
    0348195 - MU-W 2011 RIV US eng C - Konferenční příspěvek (zahraniční konf.)
    Opic, Bohumír
    Weighted estimates for the averaging integral operator and reverse Hölder inequalities.
    Progress in Analysis and its Applications. Proceedings of the 7th International ISAAC Congress. New Jersey: World Scientific, 2010 - (Ruzhansky, M.; Wirth, J.), s. 315-321. ISBN 978-981-4313-16-2.
    [7th International ISAAC Congress. London (GB), 13.07.2009-18.07.2009]
    Grant CEP: GA ČR GA201/08/0383
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: averaging integral operator * weighted Lebesgue spaces * weights * Hardy-type inequalities * reverse Hölder inequalities
    Kód oboru RIV: BA - Obecná matematika
    http://www.worldscientific.com/doi/abs/10.1142/9789814313179_0041?queryID=%24%7BresultBean.queryID%7D

    We show that the boundedness of the averaging operator A on the space Lp(v) implies that, for all r>0, the weight v(1-p) satisfies the reverse Hölder inequality over the interval (0,r) with respect to the measure dt, while the weight v satisfies the reverse Hölder inequality over the interval (r, +...) with rečspect to the measure t(-p)dt.
    Trvalý link: http://hdl.handle.net/11104/0188784