Počet záznamů: 1

Senescence-Inducible Expression of Isopentenyl Transferase Extends Leaf Life, Increases Drought Stress Resistance and Alters Cytokinin Metabolism in Cassava

  1. 1.
    0348004 - UEB-Q 2011 RIV GB eng J - Článek v odborném periodiku
    Zhang, P. - Wang, W.Q. - Zhang, G.L. - Kamínek, Miroslav - Dobrev, Petre
    Senescence-Inducible Expression of Isopentenyl Transferase Extends Leaf Life, Increases Drought Stress Resistance and Alters Cytokinin Metabolism in Cassava.
    Journal of Integrative Plant Biology. Roč. 52, č. 7 (2010), s. 653-669 ISSN 1672-9072
    Grant CEP: GA MŠk 1M06030; GA AV ČR IAA600380805
    Výzkumný záměr: CEZ:AV0Z50380511
    Klíčová slova: MANIHOT-ESCULENTA CRANTZ * TRANSGENIC CASSAVA * AGROBACTERIUM-TUMEFACIENS
    Kód oboru RIV: EB - Genetika a molekulární biologie
    Impakt faktor: 1.603, rok: 2010

    Cassava (Manihot esculenta Crantz) sheds its leaves during growth, especially within the tropical dry season. With the production of SAG12-IPT transgenic cassava we want to test the level of leaf retention and altered cytokinin metabolism of transgenic plants via the autoregulatory senescence inhibition system. After confirmation of transgene expression by molecular analysis and phenotype examination in greenhouse plants, two transgenic plant lines, 529-28 and 529-48, were chosen for further investigation. Detached mature leaves of 529-28 plants retained high levels of chlorophyll compared with wild-type leaves after dark-induced senescence treatment. Line 529-28 showed significant drought tolerance as indicated by stay-green capacity after drought stress treatment. Field experiments proved that leaf senescence syndrome was significantly delayed in 529-28 plants in comparison with wild-type and 529-48 plants.
    Trvalý link: http://hdl.handle.net/11104/0188634