Počet záznamů: 1

Statistical State-Space Modeling via Kalman Filtration

  1. 1.
    0347794 - UIVT-O 2012 RIV US eng M - Část monografie knihy
    Brabec, Marek
    Statistical State-Space Modeling via Kalman Filtration.
    Kalman Filtering. New York: Nova Science Publishers, 2011 - (Gomez, J.), s. 77-110. Mathematics Research Developments. ISBN 978-1-61761-462-0
    Výzkumný záměr: CEZ:AV0Z10300504
    Klíčová slova: kalman filter * state-space * time-series model * prediction error decomposition * statistical estimation
    Kód oboru RIV: BB - Aplikovaná statistika, operační výzkum

    We start with a brief review of the theory underlying the Kalman filter (KF) statistical modeling based on the state-space approach. We will stress the prediction error decomposition as a highly effective way of computing the likelihood function, useful when maximum likelihood estimate of certain structural parameters is attempted. Next, we will illustrate how the state-space modeling and KF can be useful for solving practical problems from interesting real-life applications. Firstly, the state-space approach and KF estimation will be shown as a tool for estimation of time-varying parameters describing radon concentrations in houses, based on two underlying differential equations summarizing the radon and tracer dynamics. Secondly, we will show how the Kalman filtration can be useful for estimation of underlying growth curve of small children. Further, we will consider also multivariate approach useful for individualized natural gas consumption modeling.
    Trvalý link: http://hdl.handle.net/11104/0188488