Počet záznamů: 1

The Proof of Completeness of the Graph Method for Generation of Affine Moment Invariants

  1. 1.
    0345091 - UTIA-B 2011 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Suk, Tomáš
    The Proof of Completeness of the Graph Method for Generation of Affine Moment Invariants.
    Image Analysis and Recognition, Proceedings of 7th International Conference ICIAR 2010. Vol. 1. Berlin, Heidelberg: Springer, 2010 - (Campilho, A.; Kamel, M.), s. 157-166. Lecture Notes in Computer Science, LNCS, 6111. ISBN 978-3-642-13771-6. ISSN 0302-9743.
    [7th International Conference on Image Analysis and Recognition, ICIAR 2010. Póvoa de Varzim (PT), 21.06.2010-23.06.2010]
    Grant CEP: GA ČR GA102/08/1593; GA ČR GA102/08/0470
    Výzkumný záměr: CEZ:AV0Z10750506
    Klíčová slova: affine invariants * moments * graphs * tensors * Cayley-Aronhold differential equation
    Kód oboru RIV: IN - Informatika
    http://library.utia.cas.cz/separaty/2010/ZOI/suk-the proof of completeness of the graph method for generation of affine moment invariants.pdf http://library.utia.cas.cz/separaty/2010/ZOI/suk-the proof of completeness of the graph method for generation of affine moment invariants.pdf

    Features for recognition of affinely distorted objects are of great demand. The affine moment invariants can be generated by a few methods, namely the graph method, the tensor method and the direct solution of the Cayley-Aronhold differential equation. The proof of their equivalence is complicated; it can be derived from the Gurevich's proof for affine tensor invariants. The theme of this paper is this derivation.
    Trvalý link: http://hdl.handle.net/11104/0186440