Počet záznamů: 1

A Weak Solvability of the Navier-Stokes Equation with Navier's Boundary Condition Around a Ball Striking the Wall

  1. 1.
    0345048 - MU-W 2013 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Neustupa, Jiří - Penel, P.
    A Weak Solvability of the Navier-Stokes Equation with Navier's Boundary Condition Around a Ball Striking the Wall.
    Advances in Mathematical Fluid Mechanics. Heidelberg: Springer, 2010 - (Rannacher, R.; Sequeira, A.), s. 385-407. ISBN 978-3-642-04067-2.
    [Advances in mathematical fluid mechanics. Estoril (PT), 21.05.2007-25.5.2007]
    Grant CEP: GA AV ČR IAA100190905
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: Navier-Stokes equations * Weak solution * Navier's boundary condition
    Kód oboru RIV: BA - Obecná matematika
    http://link.springer.com/chapter/10.1007%2F978-3-642-04068-9_24

    We assume that Bt is a closed ball in the half-space x3>0 in R3, striking the wall (= the x1, x2–plane) at time tc in (0, T ). The speed of the ball at the instant of the collision need not be zero. Although a weak solution to the Navier-Stokes equation with Dirichlet’s no-slip boundary condition does not exist if the speed of the stroke is non-zero, we prove that such a solution may exist if Dirichlet’s boundary condition is replaced by Navier’s slip boundary condition.
    Trvalý link: http://hdl.handle.net/11104/0186413