Počet záznamů: 1

Nodal O(h4)-superconvergence in 3D by averaging piecewise linear, bilinear, and trilinear FE approximations

  1. 1.
    0338973 - MU-W 2010 RIV CN eng J - Článek v odborném periodiku
    Hannukainen, A. - Korotov, S. - Křížek, Michal
    Nodal O(h4)-superconvergence in 3D by averaging piecewise linear, bilinear, and trilinear FE approximations.
    Journal of Computational Mathematics. Roč. 28, č. 1 (2010), s. 1-10 ISSN 0254-9409
    Grant CEP: GA AV ČR(CZ) IAA100190803
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: higher order error estimates * tetrahedral and prismatic elements * superconvergence * averaging operators
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 0.760, rok: 2010
    http://www.jstor.org/stable/43693564

    We construct and analyse a nodal O(h4)-superconvergent FE scheme for approximating the Poisson equation with homogeneous boundary conditions in three-dimensional domains by means of piecewise trilinear functions. The scheme is based on averaging the equations that arise from FE approximations on uniform cubic, tetrahedral, and prismatic partitions. This approach presents a three-dimensional generalization of a two-dimensional averaging of linear and bilinear elements which also exhibits nodal O(h4)-superconvergence (ultraconvergence). The obtained superconvergence result is illustrated by two numerical examples.
    Trvalý link: http://hdl.handle.net/11104/0182614
    Název souboruStaženoVelikostKomentářVerzePřístup
    Krizek3.pdf11247.7 KBVydavatelský postprintvyžádat