Počet záznamů: 1

Bifurcation points for a reaction-diffusion system with two inequalities

  1. 1.
    0336125 - MU-W 2010 RIV US eng J - Článek v odborném periodiku
    Eisner, J. - Kučera, Milan - Väth, M.
    Bifurcation points for a reaction-diffusion system with two inequalities.
    Journal of Mathematical Analysis and Applications. Roč. 365, č. 1 (2010), s. 176-194 ISSN 0022-247X
    Grant CEP: GA AV ČR IAA100190805
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: global bifurcation * degree * stationary solutions * reaction-diffusion system * variational inequality * Signorini boundary condition * Laplace operator
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 1.174, rok: 2010
    http://www.sciencedirect.com/science/article/pii/S0022247X09008579

    We consider a reaction-diffusion system of activator-inhibitor or substrate-depletion type which is subject to diffusion-driven instability. We show that obstacles (e.g. a unilateral membrane) for both quantities modeled in terms of inequalities introduce a new bifurcation of spatially non-homogeneous steady states in the domain of stability of the trivial solution of the corresponding classical problem without obstacles.
    Trvalý link: http://hdl.handle.net/11104/0180430
    Název souboruStaženoVelikostKomentářVerzePřístup
    Kucera1.pdf2409.6 KBVydavatelský postprintvyžádat