Počet záznamů: 1

Equivalent operator preconditioning for elliptic problems

  1. 1.
    0328616 - UGN-S 2010 RIV NL eng J - Článek v odborném periodiku
    Axelsson, Owe - Karátson, J.
    Equivalent operator preconditioning for elliptic problems.
    Numerical Algorithms. Roč. 50, č. 3 (2009), s. 297-380 ISSN 1017-1398
    Výzkumný záměr: CEZ:AV0Z30860518
    Klíčová slova: Elliptic problem * Conjugate gradient method * preconditioning * equivalent operators * compact operators
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 0.716, rok: 2009
    http://en.scientificcommons.org/42514649

    The numerial solution of linear elliptic partial differential equations most often involves a finite element or finite difference discretization. To preserve sparsity, the arising system is normally solved using an iterative solution method, commonly a preconditioned conjugate gradient method.Preconditioning is a crucial part of such a solution process. In order to enable the solution of very large-scale systems, it is desirable that the total computational cost will be of optimal order, i.e. proportional to the degrees of freedom of the paaroximation used, which also induces mesh independent convergence of the iteration. This paper surveys the equivalent operator approach, which has proven to provide an efficient general framework to construct such preconditioners.
    Trvalý link: http://hdl.handle.net/11104/0174896