Počet záznamů: 1

Triangulation Heuristics for BN2O Networks

  1. 1.
    0327312 - UIVT-O 2010 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Savický, Petr - Vomlel, Jiří
    Triangulation Heuristics for BN2O Networks.
    [Heuristiky pro triangulaci sítí typu BN2O.]
    Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Berlin: Springer, 2009 - (Sossai, C.; Chemello, G.), s. 566-577. Lecture Notes in Artificial Intelligence, 5590. ISBN 978-3-642-02905-9. ISSN 0302-9743.
    [ECSQARU 2009. European Conference /10./. Verona (IT), 01.07.2009-03.07. 2009]
    Grant CEP: GA MŠk(CZ) 1M0545; GA AV ČR 1ET100300517; GA MŠk 1M0572; GA ČR GEICC/08/E010; GA ČR GA201/09/1891
    Grant ostatní: GA MŠk(CZ) 2C06019
    Výzkumný záměr: CEZ:AV0Z10300504; CEZ:AV0Z10750506
    Klíčová slova: Bayesian network * BN2O * noisy-or * graphical transformation * parent divorcing * tensor rank-one decomposition
    Kód oboru RIV: BA - Obecná matematika

    A BN2O network is a Bayesian network having the structure of a bipartite graph with all edges directed from one part (the top level) toward the other (the bottom level) and where all conditional probability tables are noisy-or gates. In order to perform efficient inference, graphical transformations of these networks are performed. The complexity of inference is proportional to the total table size of tables corresponding to the cliques of the triangulated graph. Therefore in order to get efficient inference it is desirable to have small cliques in the triangulated graph. We analyze existing heuristic triangulation methods applicable to BN2O networks after transformations using parent divorcing and tensor rank-one decomposition and suggest several modifications. Both theoretical and experimental results confirm that tensor rank-one decomposition yields better results than parent divorcing in randomly generated BN2O networks that we tested.

    Síť typu BN2O je Bayesovská síť se strukturou bipartitního grafu, ve kterém jsou všechny hrany orientované z jedné části (horní vrstva) do druhé části (dolní vrstva) a ve kterém jsou všechny pravděpodobnostní tabulky noisy-or. Pro zvýšení efektivnosti inference jsou tyto sítě transformovány z hlediska jejich grafové struktury. Složitost inference je úměrná celkové velikosti tabulek v síti. Proto je cílem transformace dosáhnout co nejmenší součet velikosti tabulek triangulované sítě. Článek testuje existující metody triangulace aplikovatelné na sítě BN2O po transformacích parent divorcing a tensor rank-one decomposition a navrhuje některé modifikace. Jak teoretické, tak experimentální výsledky potvrzují, že tensor rank-one decomposition poskytuje lepší výsledky než parent divorcing na náhodně generovaných sítích BN2O, které byly v experimentu použity.
    Trvalý link: http://hdl.handle.net/11104/0174155