Počet záznamů: 1

Partitioned Triangular Tridiagonalization

  1. 1.
    0310891 - UIVT-O 2012 RIV US eng J - Článek v odborném periodiku
    Rozložník, Miroslav - Shklarski, G. - Toledo, S.
    Partitioned Triangular Tridiagonalization.
    ACM Transactions on Mathematical Software. Roč. 37, č. 4 (2011), 38:1-38:16 ISSN 0098-3500
    Grant CEP: GA AV ČR IAA100300802
    Výzkumný záměr: CEZ:AV0Z10300504
    Klíčová slova: algorithms * performance * symmetric indefinite matrices * tridiagonalization * Aasen's tridiagonalization * Parlett-Reid tridiagonalization * partitioned factorizations * recursive factorizations
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 1.922, rok: 2011

    We present a partitioned algorithm for reducing a symmetric matrix to a tridiagonal form, with partial pivoting. That is, the algorithm computes a factorization PAPT = LTLT, where, P is a permutation matrix, L is lower triangular with a unit diagonal and entries’ magnitudes bounded by 1, and T is symmetric and tridiagonal. The algorithm is based on the basic (nonpartitioned) methods of Parlett and Reid and of Aasen. We show that our factorization algorithm is componentwise backward stable (provided that the growth factor is not too large), with a similar behavior to that of Aasen’s basic algorithm. Our implementation also computes the QR factorization of T and solves linear systems of equations using the computed factorization. The partitioning allows our algorithm to exploit modern computer architectures (in particular, cache memories and high-performance blas libraries). Experimental results demonstrate that our algorithms achieve approximately the same level of performance as the partitioned Bunch-Kaufman factor and solve routines in lapack.
    Trvalý link: http://hdl.handle.net/11104/0162634
    Název souboruStaženoVelikostKomentářVerzePřístup
    0310891.pdf9838.7 KBAutorský preprintpovolen