Search results

  1. 1.
    0549873 - ÚI 2023 RIV CH eng M - Monography Chapter
    Kůrková, Věra
    Some Implications of Interval Approach to Dimension for Network Complexity.
    Computational Intelligence and Mathematics for Tackling Complex Problems 2. Cham: Springer, 2022 - (Cornejo, M.; Kóczy, L.; Medina-Moreno, J.; Moreno-García, J.), s. 113-119. Studies in Computational Intelligence, 955. ISBN 978-3-030-88816-9
    R&D Projects: GA ČR(CZ) GA18-23827S
    Institutional support: RVO:67985807
    Keywords : Quasiorthogonal dimension * Sparsity of feedforward networks * High-dimensional geometry * Concentration of measure * Covering numbers
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Permanent Link: http://hdl.handle.net/11104/0325766
     
     
  2. 2.
    0521198 - ÚI 2021 RIV CH eng M - Monography Chapter
    Kůrková, Věra
    Limitations of Shallow Networks.
    Recent Trends in Learning from Data. Cham: Springer, 2020 - (Oneto, L.; Navarin, N.; Sperduti, A.; Anguita, D.), s. 129-154. Studies in Computational Intelligence, 896. ISBN 978-3-030-43882-1
    R&D Projects: GA ČR(CZ) GA18-23827S
    Institutional support: RVO:67985807
    Keywords : shallow and deep networks * model complexity * probabilistic lower bounds
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Permanent Link: http://hdl.handle.net/11104/0307155
     
     
  3. 3.
    0518614 - ÚI 2020 CZ cze M - Monography Chapter
    Kůrková, Věra
    Věra Kůrková.
    70 let podivné vědy. Rozhovory s našimi kybernetiky. Praha: ČVUT, 2019 - (Mařík, V.; Štěpánková, O.; Havel, I.), s. 82-85. ISBN 978-80-01-06667-6
    Institutional support: RVO:67985807
    Permanent Link: http://hdl.handle.net/11104/0303721
     
     
  4. 4.
    0485562 - ÚI 2021 RIV CH eng M - Monography Chapter
    Kůrková, Věra - Kainen, P.C.
    Integral Transforms Induced by Heaviside Perceptrons.
    Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy, etc. Methods and Their Applications. Cham: Springer, 2020 - (Kosheleva, O.; Shary, S.; Xiang, G.; Zapatrin, R.), s. 631-649. Studies in Computational Intelligence, 835. ISBN 978-3-030-31040-0
    R&D Projects: GA ČR GA15-18108S; GA ČR(CZ) GA18-23827S
    Institutional support: RVO:67985807
    Keywords : representations of functions by neural networks * Haeviside perceptrons * integral transforms
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Permanent Link: http://hdl.handle.net/11104/0280525
     
     
  5. 5.
    0482536 - ÚI 2021 RIV CH eng M - Monography Chapter
    Kainen, P.C. - Kůrková, Věra
    Quasiorthogonal dimension.
    Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy, etc. Methods and Their Applications. Cham: Springer, 2020 - (Kosheleva, O.; Shary, S.; Xiang, G.; Zapatrin, R.), s. 615-629. Studies in Computational Intelligence, 835. ISBN 978-3-030-31040-0
    R&D Projects: GA ČR(CZ) GA19-05704S
    Institutional support: RVO:67985807
    Keywords : high-dimensional geometry * interval approach to dimension * quasiorthogonal dimension
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Permanent Link: http://hdl.handle.net/11104/0277964
     
     
  6. 6.
    0442769 - ÚI 2024 GB eng M - Monography Chapter
    Kůrková, Věra
    Inverse problems in learning from data.
    Recent Advances in Dynamics and Control of Neural Networks. Cambridge: Cambridge Scientific Publishers, 2021 - (Kaslik, E.; Sivasundaram, S.). Mathematical Problems in Engineering Aerospace and Sciences, 6. ISBN 978-1-908106-16-2
    Institutional support: RVO:67985807
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    https://cambridgescientificpublishers.com/product/volume-six-recent-advances-in-dynamics-and-control-of-neural-networks
    Permanent Link: http://hdl.handle.net/11104/0245612
     
     
  7. 7.
    0404817 - UIVT-O 20030182 RIV NL eng M - Monography Chapter
    Kůrková, Věra
    High-Dimensional Approximation by Neural Networks.
    Advances in Learning Theory: Methods, Models and Applications. Amsterdam: IOS Press, 2003 - (Suykens, J.; Horváth, G.; Basu, S.; Micchelli, C.; Vandewalle, J.), s. 69-88. NATO Science Series, 190. ISBN 1-58603-341-7
    R&D Projects: GA ČR GA201/02/0428
    Institutional research plan: AV0Z1030915
    Keywords : neural network learning * regularized empirical error functions * high-dimensional approximation
    Subject RIV: BA - General Mathematics
    Permanent Link: http://hdl.handle.net/11104/0125050
     
     
  8. 8.
    0403757 - UIVT-O 20030111 RIV CZ cze M - Monography Chapter
    Kůrková, Věra
    Aproximace funkcí neuronovými sítěmi.
    [Approximation of Functions by Neural Networks.]
    Umělá inteligence 4. Praha: Academia, 2003 - (Mařík, M.; Štěpánková, O.; Lažanský, J.), s. 254-275. ISBN 80-200-1044-0
    R&D Projects: GA ČR GA201/02/0428; GA ČR GA201/99/0092
    Institutional research plan: AV0Z1030915
    Keywords : neural networks * universal approximation * complexity
    Subject RIV: BA - General Mathematics
    Permanent Link: http://hdl.handle.net/11104/0124049
     
     
  9. 9.
    0403755 - UIVT-O 20020140 RIV GB eng M - Monography Chapter
    Kůrková, Věra
    Universal Approximators.
    The Handbook of Brain Theory and Neural Networks. 2nd ed. Vol. 3. Cambridge: The MIT Press, 2002 - (Arbib, M.), s. 1180-1183. ISBN 0-262-01197-2
    R&D Projects: GA ČR GA201/99/0092; GA ČR GA201/02/0428
    Keywords : universal approximation property * rates of approximation * curse of dimensionality
    Subject RIV: BA - General Mathematics
    Permanent Link: http://hdl.handle.net/11104/0124047
     
     
  10. 10.
    0403328 - UIVT-O 980031 RIV GB eng M - Monography Chapter
    Kůrková, Věra
    Incremental Approximation by Neural Networks. Chapter 12.
    Dealing with Complexity: a Neural Networks Approach. London: Springer, 1998 - (Kárný, M.; Warwick, K.; Kůrková, V.), s. 177-188. Perspectives in Neural Computing. ISBN 3-540-76160-8
    R&D Projects: GA ČR GA201/96/0917
    Subject RIV: BA - General Mathematics
    Permanent Link: http://hdl.handle.net/11104/0123641
     
     

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.