Search results

  1. 1.
    0598159 - ÚI 2025 CH eng C - Conference Paper (international conference)
    Kůrková, Věra
    Some Comparisons of Linear and Deep ReLU Network Approximation.
    ICANN 2024 (to appear, to edit). Cham: Springer, 2024.
    [ICANN 2024: International Conference on Artificial Neural Networks /33./. Lugano (CH), 17.09.2024-20.09.2024]
    R&D Projects: GA ČR(CZ) GA22-02067S
    Institutional support: RVO:67985807
    Keywords : approximation of multivariable functions by neural networks * deep networks * rectified linear units * Kolmogorov’s width * Riesz basis
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    https://doi.org/10.1007/978-3-031-72359-9_17
    Permanent Link: https://hdl.handle.net/11104/0355890
     
     
  2. 2.
    0577075 - ÚI 2024 RIV CH eng C - Conference Paper (international conference)
    Kůrková, Věra
    Approximation of Binary-Valued Functions by Networks of Finite VC Dimension.
    Artificial Neural Networks and Machine Learning – ICANN 2023. Proceedings, Part I. Cham: Springer, 2023 - (Iliadis, L.; Papaleonidas, A.; Angelov, P.; Jayne, C.), s. 483-490. Lecture Notes in Computer Science, 14254. ISBN 978-3-031-44206-3. ISSN 0302-9743.
    [ICANN 2023: International Conference on Artificial Neural Networks /32./. Heraklion (GR), 26.09.2023-29.09.2023]
    R&D Projects: GA ČR(CZ) GA22-02067S
    Institutional support: RVO:67985807
    Keywords : approximation by neural networks * bounds on approximation errors * VC dimension * growth function * high-dimensional probability * concentration inequalities * method of bounded differences
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    https://dx.doi.org/10.1007/978-3-031-44207-0_40
    Permanent Link: https://hdl.handle.net/11104/0346341
     
     
  3. 3.
    0507969 - ÚI 2020 RIV CH eng C - Conference Paper (international conference)
    Kůrková, Věra
    Probabilistic Bounds for Approximation by Neural Networks.
    Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. Proceedings, Part I. Cham: Springer, 2019 - (Tetko, I.; Kůrková, V.; Karpov, P.; Theis, F.), s. 418-428. Lecture Notes in Computer Science, 11727. ISBN 978-3-030-30486-7. ISSN 0302-9743.
    [ICANN 2019. International Conference on Artificial Neural Networks /28./. Munich (DE), 17.09.2019-19.09.2019]
    R&D Projects: GA ČR(CZ) GA19-05704S
    Institutional support: RVO:67985807
    Keywords : Approximation of random functions * Feedforward networks * Dictionaries of computational units * High-dimensional geometry * Concentration of measure * Azuma-Hoeffding inequalities
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Permanent Link: http://hdl.handle.net/11104/0298932
     
     
  4. 4.
    0503127 - ÚI 2021 RIV CH eng C - Conference Paper (international conference)
    Kůrková, Věra - Sanguineti, M.
    Probabilistic Bounds for Binary Classification of Large Data Sets.
    Recent Advances in Big Data and Deep Learning. Cham: Springer, 2020 - (Oneto, L.; Navarin, N.; Sperduti, A.; Anguita, D.), s. 309-319. Proceedings of the International Neural Networks Society, 1. ISBN 978-3-030-16840-7. ISSN 2661-8141.
    [INNSBDDL 2019: INNS Big Data and Deep Learning /4./. Sestri Levante (IT), 16.04.2019-18.04.2019]
    R&D Projects: GA ČR(CZ) GA18-23827S
    Institutional support: RVO:67985807
    Keywords : Binary classification * Approximation by feedforward networks * Concentration of measure * Azuma-Hoeffding inequality
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Permanent Link: http://hdl.handle.net/11104/0294978
    FileDownloadSizeCommentaryVersionAccess
    0503127a.pdf6164.7 KBPublisher’s postprintrequire
     
     
  5. 5.
    0493926 - ÚI 2019 RIV DE eng C - Conference Paper (international conference)
    Kůrková, Věra - Sanguineti, M.
    Probabilistic Bounds on Complexity of Networks Computing Binary Classification Tasks.
    ITAT 2018: Information Technologies – Applications and Theory. Proceedings of the 18th conference ITAT 2018. Aachen: Technical University & CreateSpace Independent Publishing Platform, 2018 - (Krajči, S.), s. 86-91. CEUR Workshop Proceedings, V-2203. ISSN 1613-0073.
    [ITAT 2018. Conference on Information Technologies – Applications and Theory /18./. Plejsy (SK), 21.09.2018-25.09.2018]
    R&D Projects: GA ČR(CZ) GA18-23827S
    Institutional support: RVO:67985807
    Keywords : feedforward networks * binary classification * measures of sparsity * probabilistic bounds * dictionaries of computational units
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    http://ceur-ws.org/Vol-2203/86.pdf
    Permanent Link: http://hdl.handle.net/11104/0287193
    FileDownloadSizeCommentaryVersionAccess
    a0493926.pdf5627.8 KBPublisher’s postprintrequire
     
     
  6. 6.
    0493825 - ÚI 2019 RIV CH eng C - Conference Paper (international conference)
    Kůrková, Věra
    Sparsity and Complexity of Networks Computing Highly-Varying Functions.
    Artificial Neural Networks and Machine Learning – ICANN 2018. Proceedings, Part III. Cham: Springer, 2018 - (Kůrková, V.; Manolopoulos, Y.; Hammer, B.; Iliadis, L.; Maglogiannis, I.), s. 534-543. Lecture Notes in Computer Science, 11141. ISBN 978-3-030-01423-0. ISSN 0302-9743.
    [ICANN 2018. International Conference on Artificial Neural Networks /27./. Rhodes (GR), 04.10.2018-07.10.2018]
    R&D Projects: GA ČR(CZ) GA18-23827S
    Institutional support: RVO:67985807
    Keywords : Shallow and deep networks * Model complexity * Sparsity * Highly-varying functions * Covering numbers * Dictionaries of computational units * Perceptrons
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    https://www.springer.com/us/book/9783030014230
    Permanent Link: http://hdl.handle.net/11104/0287121
    FileDownloadSizeCommentaryVersionAccess
    a0493825.pdf4377.7 KBAuthor’s postprintrequire
     
     
  7. 7.
    0478625 - ÚI 2018 RIV DE eng C - Conference Paper (international conference)
    Kůrková, Věra
    Bounds on Sparsity of One-Hidden-Layer Perceptron Networks.
    Proceedings ITAT 2017: Information Technologies - Applications and Theory. Aachen & Charleston: Technical University & CreateSpace Independent Publishing Platform, 2017 - (Hlaváčová, J.), s. 100-105. CEUR Workshop Proceedings, V-1885. ISBN 978-1974274741. ISSN 1613-0073.
    [ITAT 2017. Conference on Theory and Practice of Information Technologies - Applications and Theory /17./. Martinské hole (SK), 22.09.2017-26.09.2017]
    R&D Projects: GA ČR GA15-18108S
    Institutional support: RVO:67985807
    Keywords : shallow perceptron networks * sparse networks * pseudo-noise sequences * variational norm
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    http://ceur-ws.org/Vol-1885/100.pdf
    Permanent Link: http://hdl.handle.net/11104/0274766
    FileDownloadSizeCommentaryVersionAccess
    a0478625.pdf2309.1 KBPublisher’s postprintrequire
     
     
  8. 8.
    0476509 - ÚI 2018 RIV CH eng C - Conference Paper (international conference)
    Kůrková, Věra
    Sparsity of Shallow Networks Representing Finite Mappings.
    EANN 2017. Cham: Springer, 2017 - (Boracchi, G.; Iliadis, L.; Jayne, C.; Likas, A.), s. 337-348. Communications in Computer and Information Science, 744. ISBN 978-3-319-65171-2. ISSN 1865-0929.
    [EANN 2017. International Conference /18./. Athens (GR), 25.08.2017-27.08.2017]
    R&D Projects: GA ČR GA15-18108S
    Institutional support: RVO:67985807
    Keywords : shallow networks * finite mappings * sparsity * model complexity * concentration of measure * signum perceptrons
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Permanent Link: http://hdl.handle.net/11104/0272989
    FileDownloadSizeCommentaryVersionAccess
    a0476509.pdf3229.6 KBPublisher’s postprintrequire
     
     
  9. 9.
    0462912 - ÚI 2017 RIV DE eng C - Conference Paper (international conference)
    Kůrková, Věra
    Multivariable Approximation by Convolutional Kernel Networks.
    Proceedings ITAT 2016: Information Technologies - Applications and Theory. Aachen & Charleston: Technical University & CreateSpace Independent Publishing Platform, 2016 - (Brejová, B.), s. 118-122. CEUR Workshop Proceedings, V-1649. ISBN 978-1-5370-1674-0. ISSN 1613-0073.
    [ITAT 2016. Conference on Theory and Practice of Information Technologies /16./. Tatranské Matliare (SK), 15.09.2016-19.09.2016]
    R&D Projects: GA ČR GA15-18108S
    Institutional support: RVO:67985807
    Keywords : kernel networks * approximation of functions * Fourier transform
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    http://ceur-ws.org/Vol-1649/118.pdf
    Permanent Link: http://hdl.handle.net/11104/0262258
    FileDownloadSizeCommentaryVersionAccess
    a0462912.pdf4145 KBPublisher’s postprintrequire
     
     
  10. 10.
    0460704 - ÚI 2017 RIV CH eng C - Conference Paper (international conference)
    Kůrková, Věra
    Lower Bounds on Complexity of Shallow Perceptron Networks.
    Engineering Applications of Neural Networks. Cham: Springer, 2016 - (Jayne, C.; Iliadis, L.), s. 283-294. Communications in Computer and Information Science, 629. ISBN 978-3-319-44187-0. ISSN 1865-0929.
    [EANN 2016. International Conference /17./. Aberdeen (GB), 02.09.2016-05.09.2016]
    R&D Projects: GA ČR GA15-18108S
    Institutional support: RVO:67985807
    Keywords : shallow feedforward networks * signum perceptrons * finite mappings * model complexity * Hadamard matrices
    OECD category: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Permanent Link: http://hdl.handle.net/11104/0260719
    FileDownloadSizeCommentaryVersionAccess
    a0460704.pdf3196.9 KBPublisher’s postprintrequire
     
     

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.