Testing of Fibrous Membranes with Different Scaffold Morphology for Development of 3D Skin Model

Article Preview

Abstract:

Replacement of in vivo testing using advanced 3D constructs is an important challenge in tissue engineering applications. The cell culture material should be biocompatible and should mimic the natural microenvironment of the existing tissue. Nanofibrous scaffolds prepared by electrospinning from biocompatible polymers have suitable properties for cell culture in a 3D environment. Thanks to the high volume-to-surface ratio, controlled porous structure with high pore interconnection and microarchitecture in the nanoscale range, nanofibers are in the foreground of interest. We tested membranes with different topography with keratinocyte and fibroblast cell lines. Fibroblast showed stable growth with no difference among the scaffolds. On the other hand, keratinocytes preferred scaffolds with nanofiber morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-154

Citation:

Online since:

March 2020

Export:

Price:

* - Corresponding Author

[1] Vocetkova, K., Buzgo, M., Sovkova, V., Bezdekova, D., Kneppo, P., and Amler, E., Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells.: Cell proliferation. 2016. vol. 49, no. 5, p.568–78.

DOI: 10.1111/cpr.12276

Google Scholar

[2] Chen, S., Li, R., Li, X., and Xie, J., Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine: Advanced Drug Delivery Reviews. 2018. vol. 132 p.188–213.

DOI: 10.1016/j.addr.2018.05.001

Google Scholar

[3] Hosseini, F. S., Enderami, S. E., Hadian, A., Abazari, M. F., Ardeshirylajimi, A., Saburi, E., Soleimanifar, F., and Nazemisalman, B., Efficient osteogenic differentiation of the dental pulp stem cells on β-glycerophosphate loaded polycaprolactone/polyethylene oxide blend nanofibers: Journal of Cellular Physiology. 2019.

DOI: 10.1002/jcp.28078

Google Scholar

[4] Hokmabad, V. R., Davaran, S., Aghazadeh, M., Rahbarghazi, R., Salehi, R., and Ramazani, A., Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering: Journal of Biomaterials Applications. 2019. p.088532821882264.

DOI: 10.1177/0885328218822641

Google Scholar

[5] Plencner, M., Prosecká, E., Rampichová, M., East, B., Buzgo, M., Vysloužilová, L., Hoch, J., and Amler, E., Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution: International Journal of Nanomedicine. 2015. vol. 10 p.2635.

DOI: 10.2147/ijn.s77816

Google Scholar

[6] Sovkova, V., Vocetkova, K., Rampichova, M., Mickova, A., Buzgo, M., Lukasova, V., Dankova, J., Filova, E., Necas, A., and Amler, E., Platelet lysate as a serum replacement for skin cell culture on biomimetic PCL nanofibers: Platelets. 2018. vol. 29, no. 4.

DOI: 10.1080/09537104.2017.1316838

Google Scholar

[7] Hsia, H. C., Nair, M. R., Mintz, R. C., and Corbett, S. A., The fiber diameter of synthetic bioresorbable extracellular matrix influences human fibroblast morphology and fibronectin matrix assembly.: Plastic and reconstructive surgery. 2011. vol. 127, no. 6, p.2312–20.

DOI: 10.1097/prs.0b013e3182139fa4

Google Scholar

[8] Erisken, C., Zhang, X., Moffat, K. L., Levine, W. N., and Lu, H. H., Scaffold fiber diameter regulates human tendon fibroblast growth and differentiation.: Tissue engineering. Part A. 2013. vol. 19, no. 3–4, p.519–28.

DOI: 10.1089/ten.tea.2012.0072

Google Scholar

[9] Quynh P. Pham, †, Upma Sharma, † and, and Mikos*, A. G., Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds:  Characterization of Scaffolds and Measurement of Cellular Infiltration: 2006.

DOI: 10.1021/bm060680j

Google Scholar

[10] Pelipenko, J., Kocbek, P., Govedarica, B., Rošic, R., Baumgartner, S., and Kristl, J., The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes: European Journal of Pharmaceutics and Biopharmaceutics. 2013. vol. 84, no. 2, p.401–411.

DOI: 10.1016/j.ejpb.2012.09.009

Google Scholar