Eur. J. Entomol. 119: 368-378, 2022 | DOI: 10.14411/eje.2022.038

Specialised chemistry affects insect abundance but not overall community similarity in three rare shrub willows: Salix myrtilloides, S. repens and S. rosmarinifoliaOriginal article

Petr KOZEL ORCID...1, 2, Jing Vir LEONG ORCID...1, 2, Igor MALENOVSKÝ ORCID...3, Jan ŠUMPICH ORCID...4, Jan MACEK ORCID...4, Jan MICHÁLEK ORCID...1, Nela NOVÁKOVÁ ORCID...2, Brian E. SEDIO ORCID...5, 6, Carlo L. SEIFERT ORCID...7, Martin VOLF ORCID...1, 2
1 Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; e-mails: petrkozel.kozel@seznam.cz, jing.leong@entu.cas.cz, jan.michalek@entu.cas.cz, volf@entu.cas.cz
2 Faculty of Science, University of South Bohemia, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic, e-mail: nelak.gero@seznam.cz
3 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic; e-mail: malenovsky@sci.muni.cz
4 Department of Entomology, National Museum, Natural History Museum, Cirkusova 1740, CZ-19300 Praha 9, Czech Republic; e-mails: jansumpich@seznam.cz, janmacek@nm.cz
5 Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; e-mail: sediob@utexas.edu
6 Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
7 Department of Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 3, DE-37077 Germany; e-mail: carlo_seifert@web.de

Willows serve as a keystone host-plant genus for insect herbivores. The diversity of insect herbivore assemblages harboured by willows is typically affected by the diversity of specialised metabolites that willows produce. Here, we studied three small, shrubby willow species (Salix myrtilloides, S. repens and S. rosmarinifolia) that primarily occur at sites of high conservation value in the Czech Republic. We explored if associated insect communities reflect the specialised chemistry in these uncommon host plants. We measured the three willow species for overall metabolomic profiles and salicinoids using non-targeted metabolomics and sampled them for caterpillars, leaf-chewing beetles (adults and larvae), sawfly larvae, and sap-sucking Hemiptera. We detected 2,067 metabolites across the three willow species. Most of them were shared by S. repens and S. rosmarinifolia, while S. myrtilloides showed a distinct chemical profile. Salix repens and S. rosmarinifolia also had significantly higher concentration and richness of salicinoids than S. myrtilloides. The abundance of all insect species and generalists that also feed on host-plants outside Salicaceae was higher on S. myrtilloides than on S. rosmarinifolia or S. repens. The abundance of Salicaceae specialists did not differ among the three willow species. Insect community composition, in contrast, did not show pronounced differences among the three willows. Our results suggest that salicinoids may be responsible for the low abundance of generalist herbivores. Furthermore, our study indicates that herbivore community composition does not reflect the specialised chemistry in the three willows we studied. Therefore, we hypothesise that the presence of some of the insect species is primarily determined by other factors, such as the habitat type where the respective willow species occur. Although the studied willows possess some characteristic specialised chemistry, we conclude that their importance as hosts of specific and sometimes threatened insect fauna may be mediated by willow habitat preference.

Keywords: Insects, herbivore, host plants, concentration and richness of metabolites, salicinoids, Salicaceae, Salix, secondary metabolites, Czech Republic

Received: April 4, 2022; Revised: August 18, 2022; Accepted: August 18, 2022; Published online: September 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
KOZEL, P., LEONG, J.V., MALENOVSKÝ, I., ŠUMPICH, J., MACEK, J., MICHÁLEK, J., ... VOLF, M. (2022). Specialised chemistry affects insect abundance but not overall community similarity in three rare shrub willows: Salix myrtilloides, S. repens and S. rosmarinifolia. EJE119, Article 368-378. https://doi.org/10.14411/eje.2022.038
Download citation

References

  1. Argus G.W. 2009: Salix. In Boufford D.E. et al. (eds): Flora of North America, Magnoliophyta: Salicaceae to Brassicaceae. Vol 7. Oxford University Press, New York, 51 pp.
  2. Bakker J.P. & Berendse F. 1999: Constraints in the restoration of ecological diversity in grassland and heathland communities. - Trends Ecol. Evol. 14: 63-68. Go to original source...
  3. ter Braak C.J.F. & Šmilauer P. 2012: Canoco Reference Manual and User's Guide: Software for Ordination, Version 5.0. Microcomputer Power, Ithaca, NY, 496 pp.
  4. Burakowski B., Mroczkowski M. & Stefańska J. 1993: Chrzaszcze - Coleoptera. Ryjkowce - Curculionidae, Część 1. Katalog Fauny Polski, XXIII, 19, Państwowe Wydawnictwo Naukowe, Warszawa, 304 pp. [in Polish].
  5. Burgess S. 2020: A review of rare Scottish pot beetles with information on surveys for six-spotted (Cryptocephalus sexpunctatus) and ten-spotted (Cryptocephalus decemmaculatus) pot beetles. - Glasgow Naturalist 27(3): 14-18. Go to original source...
  6. Čížek P. 2006: Flea Beetles (Coleoptera: Chrysomelidae: Alticinae) of the Czech and Slovak Republic. Městské muzeum, Nové Město nad Metují, 75 pp. [in Czech].
  7. Denno R.F., Larsson S. & Olmstead K.L. 1990: Role of enemy-free space and plant quality in host-plant selection by willow beetles. - Ecology 71: 124-137. Go to original source...
  8. Dührkop K., Shen H., Meusel M., Rousu J. & Böcker S. 2015: Searching molecular structure databases with tandem mass spectra using CSI: FingerID. - Proc. Natn. Acad. Sci. 112: 12580-12585. Go to original source...
  9. Dührkop K., Fleischauer M., Ludwig M., Aksenov A.A., Melnik A.V., Meusel M., Dorrestein P.C., Rousu J. & Böcker S. 2019: SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. - Nature Methods 16: 299-302. Go to original source...
  10. Dührkop K. Nothias L.F., Fleischauer M., Reher R., Ludwig M., Hoffmann M.A., Petras D., Gerwick W.H., Rousu J., Dorrestein P.C. & Böcker S. 2021: Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. - Nature Biotechnol. 39: 462-471. Go to original source...
  11. Emmet A.M. 1979: Field Guide to the Smaller British Lepido­ptera. 2nd ed. British Entomological and Natural History Society, London, 271 pp.
  12. Endara M.J., Coley P.D., Ghabash G., Nicholls J.A., Dexter K.G., Donoso D.A., Stone G.N., Pennington R.T. & Kursar T.A. 2017: Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. - Proc. Natn. Acad. Sci. U.S.A. 114: E7499-E7505. Go to original source...
  13. Gower J.C. 1966: Some distance properties of latent root and vector methods used in multivariate analysis. - Biometrika 53: 325-338. Go to original source...
  14. Grulich V. & Chobot K. 2017: Red list of threatened species of the Czech Republic: Vascular plants. - Příroda 35: 6-34.
  15. He L., Wagner N.D. & Hörandl E. 2021: Restriction-site associated DNA sequencing data reveal a radiation of willow species (Salix L., Salicaceae) in the Hengduan Mountains and adjacent areas. - J. Syst. Evol. 59: 44-57. Go to original source...
  16. Hejda R., Farkač J. & Choboot K. (eds) 2017: Red List of Threatened Species of the Czech Republic. Invertebrates. Příroda, Praha, 612 pp. [in Czech].
  17. Hjältén J., Niemi L., Wennström A., Ericson L., Roininen H., & Julkunen-Tiitto R. 2007: Variable responses of natural enemies to Salix triandra phenotypes with different secondary chemistry. - Oikos 116: 751-758. Go to original source...
  18. Hörandl E., Florineth F. & Hadacek F. 2012: Weiden in Österreich und angrenzenden Gebieten. Vol. 2. Eigenverlag des Institutes für Ingineurbiologie und Landschaftsbau, Univesität für Bodenkultur, Wien, 164 pp.
  19. Julkunen-Tiitto R. 1989: Phenolic constituents of Salix: a che­mo­taxonomic survey of further Finnish species. - Phyto­chemistry 28: 2115-2125. Go to original source...
  20. Kolehmainen J., Roininen H., Julkunen-Tiitto R. & Tahvanainen J. 1994: Importance of phenolic glucosides in host selection of shoot galling sawfly, Euura amerinae, on Salix pentandra. - J. Chem. Ecol. 20: 2455-2466. Go to original source...
  21. Kolehmainen J., Julkunen-Tiitto R., Roininen H. & Tahvanainen J. 1995: Phenolic glucosides as feeding cues for willow-feeding leaf beetles. - Entomol. Exp. Appl. 74: 235-243. Go to original source...
  22. Laštůvka A., Laštůvka Z., Liška J. & Šumpich J. 2018: Butterflies and Moths of Central Europe and their Caterpillars V. Small Moths I. Academia, Praha, 536 pp. [in Czech].
  23. Lepší M. & Lepší P. 2014: Records of interesting and new plants in the South Bohemian flora XXIV. - Sb. Jihočeského muzea v Č. Budějovicích (Přír. vědy) 54: 101-121 [in Czech].
  24. Liston A.D., Heibo E., Prous M., Vårdal H., Nyman T. & Vikberg V. 2017: North European gall-inducing Euura sawflies (Hymenoptera, Tenthredinidae, Nematinae). - Zootaxa 4302(1): 1-115. Go to original source...
  25. Macek J., Dvořák J., Traxler L. & Červenka V. 2007: Butterflies and Moths of Central Europe and their Caterpillars. Moths I. Academia, Praha, 376 pp. [in Czech].
  26. Macek J., Dvořák J., Traxler L. & Červenka V. 2008: Butterflies and Moths of Central Europe and their Caterpillars. Moths II. Academia, Praha, 492 pp. [in Czech].
  27. Macek J., Procházka J. & Traxler L. 2012: Butterflies and Moths of Central Europe and their Caterpillars. Moths III. Academia, Praha, 420 pp. [in Czech].
  28. Macek J., Laštůvka Z., Beneš J. & Traxler L. 2015: Butterflies and Moths of Central Europe and their Caterpillars. IV. Butteflies. Academia, Praha, 540 pp. [in Czech].
  29. Macek J., Roller L., Beneš K., Holý K. & Holuša J. 2020: Hymenoptera of the Czech and Slovak Republics. Academia, Praha, 672 pp. [in Czech].
  30. Narango D.L., Tallamy D.W. & Shropshire K.J. 2020: Few keystone plant genera support the majority of Lepidoptera species. - Nature Commun. 11: 1-8. Go to original source...
  31. Nickel H. 2003: The Leafhoppers and Planthoppers of Germany (Hemiptera, Auchenorrhyncha): Patterns and Strategies in a Highly Diverse Group of Phytophagous Insects. Pensoft, Sofia, Moscow, and Goecke & Evers, Keltern, 460 pp.
  32. Nyman T., Farrell B.D., Zinovjev A.G. & Vikberg V. 2006: Larval habits, host-plant associations, and speciation in nematine sawflies (Hymenoptera: Tenthredinidae). - Evolution 60: 1622-1637. Go to original source...
  33. Ossiannilsson F. 1992: The Psylloidea (Homoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica. Vol. 26. E.J. Brill, Leiden, New York, Köln, 347 pp. Go to original source...
  34. Paradis E. & Schliep K. 2019: Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. - Bioinformatics 35: 526-528. Go to original source...
  35. Pasteels J.M., Rowell-Rahier M., Braekman J.C. & Dupont A. 1983: Salicin from host plant as precursor of salicylaldehyde in defensive secretion of Chrysomeline larvae. - Physiol. Entomol. 8: 307-314. Go to original source...
  36. Pluskal T., Castillo S., Villar-Briones A. & Orešič M. 2010: MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. - BMC Bioinformatics 11: 1-11. Go to original source...
  37. Ratnasingham S. & Hebert P.D. 2013: A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. - PLoS One 8(8): e66213, 16 pp. Go to original source...
  38. R Core Team 2019: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. URL: https://www.R-project.org, Vienna, Austria.
  39. Roininen H., Price P.W., Julkunen-Tiitto R., Tahvanainen J. & Ikonen A. 1999: Oviposition stimulant for a gall-inducing sawfly, Euura lasiolepis, on willow is a phenolic glucoside. - J. Chem. Ecol. 25: 943-953. Go to original source...
  40. Sedio B.E., Rojas Echeverri J.C., Boya P., Cristopher A. & Wright S.J. 2017: Sources of variation in foliar secondary chemistry in a tropical forest tree community. - Ecology 98: 616-623. Go to original source...
  41. Sedio B.E., Boya P. & Rojas Echeverri J.C. 2018: A protocol for high-throughput, untargeted forest community metabolomics using mass spectrometry molecular networks. - Appl. Plant Sci. 6(3): e1033, 13 pp. Go to original source...
  42. Sedio B.E., Spasojevic M.J., Myers J.A., Wright S.J., Person M.D., Chandrasekaran H., Dwenger J.H., Prechi M.L., López C.A., Allen D.N. et al. 2021: Chemical similarity of co-occurring trees decreases with precipitation and temperature in North American forests. - Front. Ecol. Evol. 9: 679638, 18 pp. Go to original source...
  43. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B. & Ideker T. 2003: Cytoscape: a software environment for integrated models of biomolecular interaction networks. - Genome Res. 13: 2498-2504. Go to original source...
  44. Skvortsov A.K. 1999: Willows of Russia and Adjacent Countries. University of Joensuu, Joensuu, 307 pp.
  45. Spitzer K. & Danks H.V. 2006: Insect biodiversity of boreal peat bogs. - Annu. Rev. Entomol. 51: 137-161. Go to original source...
  46. Spitzer K., Bezděk A. & Jaroš J. 1999: Ecological succession of a relict Central European peat bog and variability of its insect biodiversity. - J. Insect Conserv. 3: 97-106. Go to original source...
  47. Šumpich J., Liška J., Laštůvka A., Sitek J., Skyva J., Vávra J., Maršík L., Dvořák I., Žemlička M., Kabátek P. et al. (in press): Faunistic records from the Czech Republic - x: Lepidoptera. - Klapalekiana.
  48. Tegelberg R. & Julkunen-Tiitto R. 2001: Quantitative changes in secondary metabolites of dark-leaved willow (Salix myrsinifolia) exposed to enhanced ultraviolet-B radiation. - Physiol. Plant. 113: 541-547. Go to original source...
  49. Tishechkin D.Yu. 2002: Review of the species of the genus Macropsis Lewis, 1834 (Homoptera: Cicadellidae: Macropsinae) from European Russia and adjacent territories. - Russ. Entomol. J. 11: 123-184.
  50. Topp W., Kulfan J., Zach P. & Nicolini F. 2002: Beetle assemblages on willow trees: do phenolic glycosides matter? - Divers. Distrib. 8: 85-106. Go to original source...
  51. Vašut R., Sochor M., Hroneš M., Brandová B., Klečková L., Nývltová V. & Ševčík J. 2013: Willows of the Czech Republic. Palacký University, Olomouc, 104 pp.
  52. Verzhutskii B.N. 1981: Phytophagous Insects in Ecosystems of Eastern Siberia (Sawflies and Wood Wasps). Nauka, Novosibirsk, 302 pp.
  53. Volf M., Hrcek J., Julkunen-Tiitto R. & Novotny V. 2015a: To each its own: differential response of specialist and generalist herbivores to plant defence in willows. - J. Anim. Ecol. 84: 1123-1132. Go to original source...
  54. Volf M., Julkunen-Tiitto R., Hrcek J. & Novotny V. 2015b: Insect herbivores drive the loss of unique chemical defense in willows. - Entomol. Exp. Appl. 156: 88-98. Go to original source...
  55. Volf M., Segar S.T., Miller S.E., Isua B., Sisol M., Aubona G., Šimek M., Moos M., Laitila J., Kim J. et al. 2018: Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. - Ecol. Lett. 21: 83-92. Go to original source...
  56. Wagner N.D., He L. & Hörandl E. 2021: The evolutionary history, diversity, and ecology of willows (Salix L.) in the European Alps. - Diversity 13(4): 1-16. Go to original source...
  57. Zahradník J. 2008: Beetles. Aventinum, Praha, 288 pp. [in Czech].

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.