Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 15, 2023

Cell-type specific anti-cancerous effects of nitro-oleic acid and its combination with gamma irradiation

  • Tomas Perecko ORCID logo EMAIL logo , Jana Pereckova , Zuzana Hoferova and Martin Falk
From the journal Biological Chemistry

Abstract

Nitro-fatty acids (NFAs) are endogenous lipid mediators capable of post-translational modifications of selected regulatory proteins. Here, we investigated the anti-cancerous effects of nitro-oleic acid (NO2OA) and its combination with gamma irradiation on different cancer cell lines. The effects of NO2OA on cell death, cell cycle distribution, or expression of p21 and cyclin D1 proteins were analyzed in cancer (A-549, HT-29 and FaDu) or normal cell lines (HGF, HFF-1). Dose enhancement ratio at 50 % survival fraction (DERIC50) was calculated for samples pre-treated with NO2OA followed by gamma irradiation. NO2OA suppressed viability and induced apoptotic cell death. These effects were cell line specific but not in general selective for cancer cells. HT-29 cell line exerted higher sensitivity toward NO2OA treatment among cancer cell lines tested: induction of cell cycle arrest in the G2/M phase was associated with an increase in p21 and a decrease in cyclin D1 expression. Pre-treatment of HT-29 cells with NO2OA prior irradiation showed a significantly increased DERIC50, demonstrating radiosensitizing effects. In conclusion, NO2OA exhibited potential for combined chemoradiotherapy. Our results encourage the development of new NFAs with improved features for cancer chemoradiation.


Corresponding author: Tomas Perecko, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, CZ-612 00 Brno, Czech Republic, E-mail:

Funding source: The Czech Science Foundation

Award Identifier / Grant number: 19-09212S

Acknowledgments

We are grateful to Prof. B. A. Freeman from the Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, USA for providing the NO2OA derivative. We thank M. Travnickova and N. Szamecova for technical assistance with cytotoxicity and clonogenic assays.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Tomas Perecko: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Writing - original draft; Writing - review & editing. Jana Pereckova: Conceptualization; Investigation; Methodology; Writing - review & editing. Zuzana Hoferova: Investigation; Writing - review & editing. Martin Falk: Funding acquisition; Conceptualization; Supervision; Writing - review & editing.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the Czech Science Foundation Grant No. 19-09212S.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Abbas, T. and Dutta, A. (2009). p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9: 400–414, https://doi.org/10.1038/nrc2657.Search in Google Scholar PubMed PubMed Central

Afify, A.M.R., Rashed, M.M., Ebtesam, A.M., and El-Beltagi, H.S. (2013). Effect of gamma radiation on the lipid profiles of soybean, peanut and sesame seed oils. Grasas Aceites 64: 356–368, https://doi.org/10.3989/gya.119712.Search in Google Scholar

Alimoradi, H., Greish, K., Gamble, A.B., and Giles, G.I. (2019). Controlled delivery of nitric oxide for cancer therapy. Pharm. Nanotechnol. 7: 279–303, https://doi.org/10.2174/2211738507666190429111306.Search in Google Scholar PubMed PubMed Central

Alterio, D., Marvaso, G., Ferrari, A., Volpe, S., Orecchia, R., and Jereczek-Fossa, B.A. (2019). Modern radiotherapy for head and neck cancer. Semin. Oncol. 46: 233–245, https://doi.org/10.1053/j.seminoncol.2019.07.002.Search in Google Scholar PubMed

Asan, A., Skoko, J.J., Woodcock, C.C., Wingert, B.M., Woodcock, S.R., Normolle, D., Huang, Y., Stark, J.M., Camacho, C.J., Freeman, B.A., et al.. (2019). Electrophilic fatty acids impair RAD51 function and potentiate the effects of DNA-damaging agents on growth of triple-negative breast cells. J. Biol. Chem. 294: 397–404, https://doi.org/10.1074/jbc.ac118.005899.Search in Google Scholar PubMed PubMed Central

Baker, L.M., Baker, P.R., Golin-Bisello, F., Schopfer, F.J., Fink, M., Woodcock, S.R., Branchaud, B.P., Radi, R., and Freeman, B.A. (2007). Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction. J. Biol. Chem. 282: 31085–31093, https://doi.org/10.1074/jbc.m704085200.Search in Google Scholar

Barton, M.B., Jacob, S., Shafiq, J., Wong, K., Thompson, S.R., Hanna, T.P., and Delaney, G.P. (2014). Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother. Oncol. 112: 140–144, https://doi.org/10.1016/j.radonc.2014.03.024.Search in Google Scholar PubMed

Bonacci, G., Baker, P.R., Salvatore, S.R., Shores, D., Khoo, N.K., Koenitzer, J.R., Vitturi, D.A., Woodcock, S.R., Golin-Bisello, F., Cole, M.P., et al.. (2012). Conjugated linoleic acid is a preferential substrate for fatty acid nitration. J. Biol. Chem. 287: 44071–44082, https://doi.org/10.1074/jbc.m112.401356.Search in Google Scholar

Carmichael, J., Degraff, W.G., Gamson, J., Russo, D., Gazdar, A.F., Levitt, M.L., Minna, J.D., and Mitchell, J.B. (1989). Radiation sensitivity of human lung cancer cell lines. Eur. J. Cancer Clin. Oncol. 25: 527–534, https://doi.org/10.1016/0277-5379(89)90266-6.Search in Google Scholar PubMed

Chen, S. and Li, L. (2022). Degradation strategy of cyclin D1 in cancer cells and the potential clinical application. Front. Oncol. 12: 949688, https://doi.org/10.3389/fonc.2022.949688.Search in Google Scholar PubMed PubMed Central

Chen, Y.J., Liao, W.X., Huang, S.Z., Yu, Y.F., Wen, J.Y., Chen, J., Lin, D.G., Wu, X.Y., Jiang, N., and Li, X. (2021). Prognostic and immunological role of CD36: a pan-cancer analysis. J. Cancer 12: 4762–4773, https://doi.org/10.7150/jca.50502.Search in Google Scholar PubMed PubMed Central

Cheng, S.H., Tseng, Y.M., Wu, S.H., Tsai, S.M., and Tsai, L.Y. (2017). Whey protein concentrate renders MDA-MB-231 cells sensitive to rapamycin by altering cellular redox state and activating GSK3β/mTOR signaling. Sci. Rep. 7: 15976, https://doi.org/10.1038/s41598-017-14159-5.Search in Google Scholar PubMed PubMed Central

Colas, S., Paon, L., Denis, F., Prat, M., Louisot, P., Hoinard, C., Le Floch, O., Ogilvie, G., and Bougnoux, P. (2004). Enhanced radiosensitivity of rat autochthonous mammary tumors by dietary docosahexaenoic acid. Int. J. Cancer 109: 449–454, https://doi.org/10.1002/ijc.11725.Search in Google Scholar PubMed

Dunne, A.L., Price, M.E., Mothersill, C., Mckeown, S.R., Robson, T., and Hirst, D.G. (2003). Relationship between clonogenic radiosensitivity, radiation-induced apoptosis and DNA damage/repair in human colon cancer cells. Br. J. Cancer 89: 2277–2283, https://doi.org/10.1038/sj.bjc.6601427.Search in Google Scholar PubMed PubMed Central

Dutta, S., Chakraborty, P., Basak, S., Ghosh, S., Ghosh, N., Chatterjee, S., Dewanjee, S., and Sil, P.C. (2022). Synthesis, characterization, and evaluation of in vitro cytotoxicity and in vivo antitumor activity of asiatic acid-loaded poly lactic-co-glycolic acid nanoparticles: a strategy of treating breast cancer. Life Sci. 307: 120876, https://doi.org/10.1016/j.lfs.2022.120876.Search in Google Scholar PubMed

Fan, Y., Fang, Y., Ma, L., and Jiang, H. (2015). Investigation of micellization and vesiculation of conjugated linoleic acid by means of self-assembling and self-crosslinking. J. Surfactants Deterg. 18: 179–188, https://doi.org/10.1007/s11743-014-1591-4.Search in Google Scholar

Garner, R.M., Mould, D.R., Chieffo, C., and Jorkasky, D.K. (2019). Pharmacokinetic and pharmacodynamic effects of oral CXA-10, a nitro fatty acid, after single and multiple ascending doses in healthy and obese subjects. Clin. Transl. Sci. 12: 667–676, https://doi.org/10.1111/cts.12672.Search in Google Scholar PubMed PubMed Central

Grippo, V., Mojovic, M., Pavicevic, A., Kabelac, M., Hubatka, F., Turanek, J., Zatloukalova, M., Freeman, B.A., and Vacek, J. (2021). Electrophilic characteristics and aqueous behavior of fatty acid nitroalkenes. Redox Biol. 38: 101756, https://doi.org/10.1016/j.redox.2020.101756.Search in Google Scholar PubMed PubMed Central

Guerrero-Rodriguez, S.L., Mata-Cruz, C., Perez-Tapia, S.M., and Velasco-Velazquez, M.A. (2022). Role of CD36 in cancer progression, stemness, and targeting. Front. Cell Dev. Biol. 10: 1079076, https://doi.org/10.3389/fcell.2022.1079076.Search in Google Scholar PubMed PubMed Central

Hansen, A.L., Rahbek, L.S.J., Sorensen, A.S., Hundahl, M.P., Lomholt, S., Holm, C.K., and Kragstrup, T.W. (2021). Nitro-fatty acids decrease type I interferons and monocyte chemoattractant protein 1 in ex vivo models of inflammatory arthritis. BMC Immunol. 22: 77, https://doi.org/10.1186/s12865-021-00471-3.Search in Google Scholar PubMed PubMed Central

Hayes, J.D., Dinkova-Kostova, A.T., and Tew, K.D. (2020). Oxidative stress in cancer. Cancer Cell 38: 167–197, https://doi.org/10.1016/j.ccell.2020.06.001.Search in Google Scholar PubMed PubMed Central

Hellmuth, N., Brat, C., Awad, O., George, S., Kahnt, A., Bauer, T., Huynh Phuoc, H.P., Steinhilber, D., Angioni, C., Hassan, M., et al.. (2021). Structural modifications yield novel insights into the intriguing pharmacodynamic potential of anti-inflammatory nitro-fatty acids. Front. Pharmacol. 12: 715076, https://doi.org/10.3389/fphar.2021.715076.Search in Google Scholar PubMed PubMed Central

Hernychova, L., Alexandri, E., Tzakos, A.G., Zatloukalova, M., Primikyri, A., Gerothanassis, I.P., Uhrik, L., Sebela, M., Kopecny, D., Jedinak, L., et al.. (2022). Serum albumin as a primary non-covalent binding protein for nitro-oleic acid. Int. J. Biol. Macromol. 203: 116–129, https://doi.org/10.1016/j.ijbiomac.2022.01.050.Search in Google Scholar PubMed

Hong, S.I., Kim, J.Y., Cho, S.Y., and Park, H.J. (2010). The effect of gamma irradiation on oleic acid in methyl oleate and food. Food Chem. 121: 93–97, https://doi.org/10.1016/j.foodchem.2009.12.008.Search in Google Scholar

Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W., and Zimmermann, P. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinf., 2008: 420747, https://doi.org/10.1155/2008/420747.Search in Google Scholar PubMed PubMed Central

Katusinrazem, B. and Razem, D. (1996). Radiation-induced hydroperoxidation of oleic acid on silica gel. Radiat. Phys. Chem. 47: 393–397, https://doi.org/10.1016/0969-806x(95)00123-f.Search in Google Scholar

Kim, A.D., Zhang, R., Han, X., Kang, K.A., Piao, M.J., Maeng, Y.H., Chang, W.Y., and Hyun, J.W. (2015). Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues. Mol. Med. Rep. 12: 4314–4319, https://doi.org/10.3892/mmr.2015.3902.Search in Google Scholar PubMed

Kuhn, B., Brat, C., Fettel, J., Hellmuth, N., Maucher, I.V., Bulut, U., Hock, K.J., Grimmer, J., Manolikakes, G., Ruhl, M., et al.. (2018). Anti-inflammatory nitro-fatty acids suppress tumor growth by triggering mitochondrial dysfunction and activation of the intrinsic apoptotic pathway in colorectal cancer cells. Biochem. Pharmacol. 155: 48–60, https://doi.org/10.1016/j.bcp.2018.06.014.Search in Google Scholar PubMed

Lima, E.S., Bonini, M.G., Augusto, O., Barbeiro, H.V., Souza, H.P., and Abdalla, D.S. (2005). Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radic. Biol. Med. 39: 532–539, https://doi.org/10.1016/j.freeradbiomed.2005.04.005.Search in Google Scholar PubMed

Luxford, T.F.M., Pshenichnyuk, S.A., Asfandiarov, N.L., Perecko, T., Falk, M., and Kocisek, J. (2020). 5-Nitro-2,4-dichloropyrimidine as an universal model for low-energy electron processes relevant for radiosensitization. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21218173.Search in Google Scholar PubMed PubMed Central

Meneceur, S., Lock, S., Gudziol, V., Hering, S., Butof, R., Rehm, M., Baumann, M., Krause, M., and Von Neubeck, C. (2019). Residual γH2AX foci in head and neck squamous cell carcinomas as predictors for tumour radiosensitivity: evaluation in pre-clinical xenograft models and clinical specimens. Radiother. Oncol. 137: 24–31, https://doi.org/10.1016/j.radonc.2019.04.009.Search in Google Scholar PubMed

Nie, H., Xue, X., Li, J., Liu, X., Lv, S., Guan, G., Liu, H., Liu, G., Liu, S., and Chen, Z. (2015). Nitro-oleic acid attenuates OGD/R-triggered apoptosis in renal tubular cells via inhibition of Bax mitochondrial translocation in a PPAR-gamma-dependent manner. Cell. Physiol. Biochem. 35: 1201–1218, https://doi.org/10.1159/000373944.Search in Google Scholar PubMed

Nie, H., Xue, X., Liu, G., Guan, G., Liu, H., Sun, L., Zhao, L., Wang, X., and Chen, Z. (2016). Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase. Free Radic. Res. 50: 1200–1213, https://doi.org/10.1080/10715762.2016.1225955.Search in Google Scholar PubMed

O’donnell, V.B., Eiserich, J.P., Chumley, P.H., Jablonsky, M.J., Krishna, N.R., Kirk, M., Barnes, S., Darley-Usmar, V.M., and Freeman, B.A. (1999). Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem. Res. Toxicol. 12: 83–92, https://doi.org/10.1021/tx980207u.Search in Google Scholar PubMed

Panati, K., Subramani, P.A., Reddy, M.M., Derangula, M., Arva Tatireddigari, V.R.R., Kolliputi, N., and Narala, V.R. (2019). The nitrated fatty acid, 10-nitrooleate inhibits the neutrophil chemotaxis via peroxisome proliferator-activated receptor gamma in CLP-induced sepsis in mice. Int. Immunopharmacol. 72: 159–165, https://doi.org/10.1016/j.intimp.2019.04.001.Search in Google Scholar PubMed

Pascual, G., Avgustinova, A., Mejetta, S., Martin, M., Castellanos, A., Attolini, C.S., Berenguer, A., Prats, N., Toll, A., Hueto, J.A., et al.. (2017). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541: 41–45, https://doi.org/10.1038/nature20791.Search in Google Scholar PubMed

Pauwels, B., Korst, A.E., De Pooter, C.M., Lambrechts, H.A., Pattyn, G.G., Lardon, F., and Vermorken, J.B. (2003). The radiosensitising effect of gemcitabine and the influence of the rescue agent amifostine in vitro. Eur. J. Cancer 39: 838–846, https://doi.org/10.1016/s0959-8049(03)00002-9.Search in Google Scholar PubMed

Pawlik, T.M. and Keyomarsi, K. (2004). Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59: 928–942, https://doi.org/10.1016/j.ijrobp.2004.03.005.Search in Google Scholar PubMed

Perecko, T., Hoferova, Z., Hofer, M., Pereckova, J., and Falk, M. (2022). Administration of nitro-oleic acid mitigates radiation-induced hematopoietic injury in mice. Life Sci. 310: 121106, https://doi.org/10.1016/j.lfs.2022.121106.Search in Google Scholar PubMed

Pereckova, J., Pekarova, M., Szamecova, N., Hoferova, Z., Kamarytova, K., Falk, M., and Perecko, T. (2021). Nitro-oleic acid inhibits stemness maintenance and enhances neural differentiation of mouse embryonic stem cells via STAT3 signaling. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22189981.Search in Google Scholar PubMed PubMed Central

Piesche, M., Roos, J., Kuhn, B., Fettel, J., Hellmuth, N., Brat, C., Maucher, I.V., Awad, O., Matrone, C., Comerma Steffensen, S.G., et al.. (2020). The emerging therapeutic potential of nitro fatty acids and other Michael acceptor-containing drugs for the treatment of inflammation and cancer. Front. Pharmacol. 11: 1297, https://doi.org/10.3389/fphar.2020.01297.Search in Google Scholar PubMed PubMed Central

Resendez, A., Tailor, D., Graves, E., and Malhotra, S.V. (2019). Radiosensitization of head and neck squamous cell carcinoma (HNSCC) by a podophyllotoxin. ACS Med. Chem. Lett. 10: 1314–1321, https://doi.org/10.1021/acsmedchemlett.9b00270.Search in Google Scholar PubMed PubMed Central

Rudolph, V., Rudolph, T.K., Schopfer, F.J., Bonacci, G., Woodcock, S.R., Cole, M.P., Baker, P.R., Ramani, R., and Freeman, B.A. (2010). Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc. Res. 85: 155–166, https://doi.org/10.1093/cvr/cvp275.Search in Google Scholar PubMed PubMed Central

Sakurai, K., Tomihara, K., Yamazaki, M., Heshiki, W., Moniruzzaman, R., Sekido, K., Tachinami, H., Ikeda, A., Imaue, S., Fujiwara, K., et al.. (2020). CD36 expression on oral squamous cell carcinoma cells correlates with enhanced proliferation and migratory activity. Oral Dis. 26: 745–755, https://doi.org/10.1111/odi.13210.Search in Google Scholar PubMed

Schopfer, F.J., Baker, P.R., and Freeman, B.A. (2003). NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem. Sci. 28: 646–654, https://doi.org/10.1016/j.tibs.2003.10.006.Search in Google Scholar PubMed

Schopfer, F.J., Baker, P.R., Giles, G., Chumley, P., Batthyany, C., Crawford, J., Patel, R.P., Hogg, N., Branchaud, B.P., Lancaster, J.R.Jr., et al.. (2005). Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J. Biol. Chem. 280: 19289–19297, https://doi.org/10.1074/jbc.m414689200.Search in Google Scholar

Song, H., Rogers, N.J., Allison, S.J., Brabec, V., Bridgewater, H., Kostrhunova, H., Markova, L., Phillips, R.M., Pinder, E.C., Shepherd, S.L., et al.. (2019). Discovery of selective, antimetastatic and anti-cancer stem cell metallohelices via post-assembly modification. Chem. Sci. 10: 8547–8557, https://doi.org/10.1039/c9sc02651g.Search in Google Scholar PubMed PubMed Central

Tam, S.Y. and Wu, V.W.C. (2019). A review on the special radiotherapy techniques of colorectal cancer. Front. Oncol. 9: 208, https://doi.org/10.3389/fonc.2019.00208.Search in Google Scholar PubMed PubMed Central

Tang, X., Guo, Y., Nakamura, K., Huang, H., Hamblin, M., Chang, L., Villacorta, L., Yin, K., Ouyang, H., and Zhang, J. (2010). Nitroalkenes induce rat aortic smooth muscle cell apoptosis via activation of caspase-dependent pathways. Biochem. Biophys. Res. Commun. 397: 239–244, https://doi.org/10.1016/j.bbrc.2010.05.091.Search in Google Scholar PubMed

Vartak, S., Mccaw, R., Davis, C.S., Robbins, M.E., and Spector, A.A. (1998). Gamma-linolenic acid (GLA) is cytotoxic to 36B10 malignant rat astrocytoma cells but not to ‘normal’ rat astrocytes. Br. J. Cancer 77: 1612–1620, https://doi.org/10.1038/bjc.1998.264.Search in Google Scholar PubMed PubMed Central

Vazquez, M.M., Gutierrez, M.V., Salvatore, S.R., Puiatti, M., Dato, V.A., Chiabrando, G.A., Freeman, B.A., Schopfer, F.J., and Bonacci, G. (2020). Nitro-oleic acid, a ligand of CD36, reduces cholesterol accumulation by modulating oxidized-LDL uptake and cholesterol efflux in RAW264.7 macrophages. Redox Biol. 36: 101591, https://doi.org/10.1016/j.redox.2020.101591.Search in Google Scholar PubMed PubMed Central

Verescakova, H., Ambrozova, G., Kubala, L., Perecko, T., Koudelka, A., Vasicek, O., Rudolph, T.K., Klinke, A., Woodcock, S.R., Freeman, B.A., et al.. (2017). Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages. Free Radic. Biol. Med. 104: 10–19, https://doi.org/10.1016/j.freeradbiomed.2017.01.003.Search in Google Scholar PubMed PubMed Central

Woodcock, C.C., Huang, Y., Woodcock, S.R., Salvatore, S.R., Singh, B., Golin-Bisello, F., Davidson, N.E., Neumann, C.A., Freeman, B.A., and Wendell, S.G. (2018). Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth. J. Biol. Chem. 293: 1120–1137, https://doi.org/10.1074/jbc.m117.814368.Search in Google Scholar PubMed PubMed Central

Yen, C.S., Choy, C.S., Huang, W.J., Huang, S.W., Lai, P.Y., Yu, M.C., Shiue, C., Hsu, Y.F., and Hsu, M.J. (2018). A novel hydroxamate-based compound WMJ-J-09 causes head and neck squamous cell carcinoma cell death via LKB1-AMPK-p38MAPK-p63-Survivin cascade. Front. Pharmacol. 9: 167, https://doi.org/10.3389/fphar.2018.00167.Search in Google Scholar PubMed PubMed Central

Zdrowowicz, M., Spisz, P., Hac, A., Herman-Antosiewicz, A., and Rak, J. (2022). Influence of hypoxia on radiosensitization of cancer cells by 5-bromo-2′-deoxyuridine. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23031429.Search in Google Scholar PubMed PubMed Central

Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., and Li, Y. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target Ther. 6: 263, https://doi.org/10.1038/s41392-021-00658-5.Search in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/hsz-2023-0150).


Received: 2023-03-03
Accepted: 2023-08-14
Published Online: 2023-09-15
Published in Print: 2024-03-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2023-0150/html
Scroll to top button