Plant Protect. Sci., 2021, 57(2):134-139 | DOI: 10.17221/131/2020-PPS

Sphingolipids of plant pathogenic fungiOriginal Paper

Lucia Gharwalová*,1, Markéta Kulišová1, Anastasiia Vasyliuk1, Helena Marešová2, Andrea Palyzová2, Linda Nedbalová3, Irena Kolouchová1
1 Department of Biotechnology, University of Chemical Technology Prague, Prague, Czech Republic
2 Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
3 Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic

Glycosphingolipids in filamentous fungi are significant components of the plasma membrane and are vital for different cellular processes, such as growth, morphological transition or signal transduction. Fungal growth inhibitors targeting glycosylinositolphosphoceramide (GIPCs) biosynthesis or antifungal compounds binding to GIPCs present in membranes could present a safe way of preventing fungal growth on crops since GIPCs are not present in mammalian cells. Mass spectrometry-based shotgun lipidomics was used to analyze sphingolipids of 11 fungal strains isolated from plant material. Molecular species with inositol ceramides containing zero to five carbohydrates were identified. Differences in the amount of individual molecular species were influenced by the taxonomic affiliation. All tested strains exhibited a relatively high content (more than 40 mol.%) of GIPCs with three and more saccharides attached to the polar head. It could be assumed that the sphingolipid profiles of the tested plant pathogens would be an adaptation mechanism to antifungal plant defensins.

Keywords: defensin; filamentous fungi; glycosylinositolphosphoceramides; high resolution tandem electrospray mass spectrometry; Vitis vinifera

Published: March 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Gharwalová L, Kulišová M, Vasyliuk A, Marešová H, Palyzová A, Nedbalová L, Kolouchová I. Sphingolipids of plant pathogenic fungi. Plant Protect. Sci.. 2021;57(2):134-139. doi: 10.17221/131/2020-PPS.
Download citation

Supplementary files:

Download file131-2020 ESM.pdf

File size: 911.29 kB

References

  1. Buré C., Cacas J.L., Mongrand S., Schmitter J.M. (2014): Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Analytical and Bioanalytical Chemistry, 406: 995-1010. Go to original source... Go to PubMed...
  2. Ferket K.K.A., Levery S.B., Park C., Cammue B.P.A., Thevissen K. (2003): Isolation and characterization of Neurospora crassa mutants resistant to antifungal plant defensins. Fungal Genetics and Biology, 40: 176-185. Go to original source... Go to PubMed...
  3. Fontaine T. (2017): Sphingolipids from the human fungal pathogen Aspergillus fumigatus. Biochimie, 141: 9-15. Go to original source... Go to PubMed...
  4. Glass N.L., Donaldson G.C. (1995): Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61: 1323-1330 Go to original source... Go to PubMed...
  5. Hrelia P., Fimognari C., Maffei F., Vigagni F., Mesirca R., Pozzetti L., Paolini M., Forti G.C. (1996): The genetic and non-genetic toxicity of the fungicide Vinclozolin. Mutagenesis, 11: 445-453. Go to original source... Go to PubMed...
  6. Kaul K., Lester R.L. (1975): Characterization of inositolcontaining phosphosphingolipids from tobacco leaves: Isolation and identification of two novel, major lipids: N-acetylglucosamidoglucuronidoinositol phosphorylceramide and glucosamidoglucuronidoinositol phosphorylceramide. Plant Physiology, 55: 120-129. Go to original source... Go to PubMed...
  7. Mandala S.M., Thornton R.A., Milligan J., Rosenbach M., Garcia-Calvo M., Bull H.G., Harris G., Abruzzo G.K., Flattery A.M., Gill C.J. (1998): Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. Journal of Biological Chemistry, 273: 14942-14949. Go to original source... Go to PubMed...
  8. Meyer V., Andersen M.R., Brakhage A.A., Braus G.H., Caddick M.X., Cairns T.C., de Vries R.P., Haarmann T., Hansen K., Hertz-Fowler C., Krappmann S., Mortensen U.H., Peñalva M.A., Ram A.F.J., Head R.M. (2016): Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: A white paper. Fungal Biology and Biotechnology, 3: 6. doi: 10.1186/s40694-016-0024-8 Go to original source... Go to PubMed...
  9. Ohnuki T., Yano T., Takatsu T. (2009): Haplofungins, new inositol phosphorylceramide synthase inhibitors, from Lauriomyces bellulus SANK 26899 II. Structure elucidation. The Journal of Antibiotics, 62: 551-557. Go to original source... Go to PubMed...
  10. Rehner S.A., Buckley E. (2005): A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97: 84-98. Go to original source... Go to PubMed...
  11. Řezanka T., Kolouchová I., Gharwalová L., Doležalová J., Nedbalová L., Sigler K. (2018): Sphingolipidomics of thermotolerant yeasts. Lipids, 53: 627-639. Go to original source... Go to PubMed...
  12. Takesako K., Kuroda H., Inoue T., Haruna F., Yoshikawa Y., Kato I., Uchida K., Hiratani T., Yamaguchi H. (1993): Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. The Journal of Antibiotics, 46: 1414-1420. Go to original source... Go to PubMed...
  13. Toledo M.S., Levery S.B., Bennion B., Guimaraes L.L., Castle S.A., Lindsey R., Momany M., Park C., Straus A.H., Takahashi H.K. (2007): Analysis of glycosylinositol phosphorylceramides expressed by the opportunistic mycopathogen Aspergillus fumigatus. Journal of Lipid Research, 48: 1801-1824. Go to original source... Go to PubMed...
  14. Toledo M.S., Tagliari L., Suzuki E., Silva C.M., Straus A.H., Takahashi H.K. (2010): Effect of anti-glycosphingolipid monoclonal antibodies in pathogenic fungal growth and differentiation. Characterization of monoclonal antibody MEST-3 directed to Manp α1-3Manp α1-2IPC. BMC Microbiology, 10: 1-12. Go to original source... Go to PubMed...
  15. Trinel P.-A., Maes E., Zanetta J.-P., Delplace F., Coddeville B., Jouault T., Strecker G., Poulain D. (2002): Candida albicans phospholipomannan, a new member of the fungal mannose inositol phosphoceramide family. Journal of Biological Chemistry, 277: 37260-37271. Go to original source... Go to PubMed...
  16. Utesch T., de Miguel Catalina A., Schattenberg C., Paege N., Schmieder P., Krause E., Miao Y., McCammon J.A., Meyer V., Jung S. (2018): A computational modeling approach predicts interaction of the antifungal protein AFP from Aspergillus giganteus with fungal membranes via its γ-core motif. mSphere, 3:e00377-18. doi: 10.1128/mSphere.00377-18 Go to original source... Go to PubMed...
  17. White T.J., Bruns T.D., Lee S., Taylor J. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (eds): PCR Protocols: A Guide to Methods and Applications. San Diego, Academic Press: 315-322. Go to original source...
  18. Wightwick A., Walters R., Allinson G., Reichman S., Menzies N. (2010): Environmental risks of fungicides used in horticultural production systems. In: Carisse O. (ed.): Fungicides. Rijeka, Intech: 273-304. Go to original source...
  19. Yano T., Aoyagi A., Kozuma S., Kawamura Y., Tanaka I., Suzuki Y., Takamatsu Y., Takatsu T., Inukai M. (2007): Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. The Journal of Antibiotics, 60: 136-142. Go to original source... Go to PubMed...
  20. Zakrzewska A., Boorsma A., Delneri D., Brul S., Oliver S.G., Klis F.M. (2007): Cellular processes and pathways that protect Saccharomyces cerevisiae cells against the plasma membrane-perturbing compound chitosan. Eukaryotic Cell, 6: 600-608. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.