Emerging Strategies for Mitigating Acid Mine Drainage Formation and Environmental Impacts: A Comprehensive Review of Recent Advances

Yudha Gusti Wibowo, Muhammad Fauzul Imron, Setyo Budi Kurniawan, Bimastyaji Surya Ramadan, Tarmizi Taher, Alvian Hayu Sudibya, Hutwan Syarifuddin, Khairurrijal Khairurrijal, Jarwinda

Abstract

Acid mine drainage (AMD) is a significant threat to the environment due to its high acidity and metal ion content. To effectively eliminate pollutants from AMD, various approaches are necessary. This review aims to provide a comprehensive understanding of recent advances in AMD mitigation. While treatment technologies have developed to eliminate AMD, they often produce sludge as a by-product and require expensive maintenance. As a cost-effective alternative, the recovery of AMD resources can reduce toxicity and promote reuse of heavy metals and rare earth elements. This review also analyzes the challenges and prospects of AMD mitigation implementation, including current mitigation conditions and knowledge gaps. Researchers can benefit from this review by gaining insight into research progress in this area, identifying strengths and weaknesses of current AMD mitigation applications, and exploring future research directions.

References

Abfertiawan, M. S., Y. Palinggi, M. Handajani, K. Pranoto, and A. Atmaja (2020). Evaluation of Non-Acid-Forming Material Layering for the Prevention of Acid Mine Drainage of Pyrite and Jarosite. Heliyon, 6(11); e05590

Acharya, B. S. and G. Kharel (2020). Acid Mine Drainage from Coal Mining in the United States An Overview. Journal of Hydrology, 588; 125061

Agboola, O. (2019). The Role of Membrane Technology in Acid Mine Water Treatment: A Review. Korean Journal of Chemical Engineering, 36; 1389–1400

Agha Beygli, R., N. Mohaghegh, and E. Rahimi (2019). Metal Ion Adsorption from Wastewater by g-C3N4 Modified with Hydroxyapatite: A Case Study from Sarcheshmeh Acid Mine Drainage. Research on Chemical Intermediates, 45; 2255–2268

Aguinaga, O. E., J. F. Wakelin, K. N. White, A. P. Dean, and J. K. Pittman (2019). The Association of Microbial Activity with Fe, S and Trace Element Distribution in Sediment Cores within a Natural Wetland Polluted by Acid Mine Drainage. Chemosphere, 231; 432–441

Ahmadijokani, F., S. Tajahmadi, A. Bahi, H. Molavi, M. Rezakazemi, F. Ko, T. M. Aminabhavi, and M. Arjmand (2021). Ethylenediamine-Functionalized Zr-Based MOF for Efficient Removal of Heavy Metal Ions from Water. Chemosphere, 264; 128466

Al-Ghouti, M. A. and D. A. Da’ana (2020). Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. Journal of Hazardous Materials, 393; 122383

Amaral Zettler, L. A., F. Gómez, E. Zettler, B. G. Keenan, R. Amils, and M. L. Sogin (2002). Eukaryotic Diversity in Spain’s River of Fire. Nature, 417(6885); 137–137

Angai, J. U., C. J. Ptacek, E. Pakostova, J. G. Bain, B. R. Verbuyst, and D. W. Blowes (2022). Removal of Arsenic and Metals from Groundwater Impacted by Mine Waste Using Zero-Valent Iron and Organic Carbon: Laboratory Column Experiments. Journal of Hazardous Materials, 424; 127295

Asif, M. B., W. E. Price, Z. Fida, A. Tufail, T. Ren, and F. I. Hai (2021). Acid Mine Drainage and Sewage Impacted Groundwater Treatment by Membrane Distillation: Organic Micropollutant and Metal Removal and Membrane Fouling. Journal of Environmental Management, 291; 112708

Bai, S., Y. Bi, J. Li, P. Yu, Z. Ding, C. Lv, and S. Wen (2021). Innovative Utilization of Acid Mine Drainage (AMD): A Promising Activator for Pyrite Flotation Once Depressed in a High Alkali Solution (HAS)–Gearing Towards a Cleaner Production Concept of Copper Sulfide Ore. Minerals Engineering, 170; 106997

Baker, B. J. and J. F. Banfield (2003). Microbial Communities in Acid Mine Drainage. FEMS Microbiology Ecology, 44(2); 139–152

Bao, Y., J. Lai, Y. Wang, Z. Fang, Y. Su, D. S. Alessi, N. S. Bolan, X. Wu, Y. Zhang, and X. Jiang (2022). Effect of Fulvic Acid Co-Precipitation on Biosynthesis of Fe(III) Hydroxysulfate and its Adsorption of Lead. Environmental Pollution, 295; 118669

Barthen, R., M. L. Sulonen, S. Peräniemi, R. Jain, and A. M. Lakaniemi (2022). Removal and Recovery of Metal Ions from Acidic Multi-Metal Mine Water using Waste Digested Activated Sludge as Biosorbent. Hydrometallurgy, 207; 105770

Bejan, D. and N. J. Bunce (2015). Acid Mine Drainage: Electrochemical Approaches to Prevention and Remediation of Acidity and Toxic Metals. Journal of Applied Electrochemistry, 45; 1239–1254

Borden, R. K., P. L. Brown, and S. Sturgess (2022). Geochemical and Hydrological Evolution of Mine Impacted Waters at the Argyle Diamond Mine, Western Australia. Applied Geochemistry, 139; 105253

Borthakur, P., M. Aryafard, Z. Zara, Ř. David, B. Minofar, M. R. Das, and M. Vithanage (2021). Computational and Experimental Assessment of pH and Specific Ions on the Solute Solvent Interactions Clay-Biochar Composites Towards Tetracycline Adsorption: Implications on Wastewater Treatment. Journal of Environmental Management, 283; 111989

Brar, K. K., S. Etteieb, S. Magdouli, L. Calugaru, and S. K. Brar (2022). Novel Approach for the Management of Acid Mine Drainage (AMD) for the Recovery of Heavy Metals Along with Lipid Production by Chlorella vulgaris. Journal of Environmental Management, 308; 114507

Brewster, E. T., G. Pozo, D. J. Batstone, S. Freguia, and P. Ledezma (2018). A Modelling Approach to Assess the Long-Term Stability of a Novel Microbial/Electrochemical System for the Treatment of Acid Mine Drainage. RSC Advances, 8(33); 18682–18689

Budihardjo, M. A., Y. G. Wibowo, B. S. Ramadan, M. A. Serunting, and E. Yohana (2021). Mercury Removal using Modified Activated Carbon of Peat Soil and Coal in Simulated Landfill Leachate. Environmental Technology & Innovation, 24; 102022

Bunce, N. J., M. Chartrand, and P. Keech (2001). Electrochemical Treatment of Acidic Aqueous Ferrous Sulfate and Copper Sulfate as Models for Acid Mine Drainage. Water Research, 35(18); 4410–4416

Burman, N. W., C. M. Sheridan, and K. G. Harding (2019). Lignocellulosic Bioethanol Production from Grasses Pre-Treated with Acid Mine Drainage: Modeling and Comparison of SHF and SSF. Bioresource Technology Reports, 7; 100299

Buzzi, D. C., L. S. Viegas, M. A. S. Rodrigues, A. M. Bernardes, and J. A. S. Tenório (2013). Water Recovery from Acid Mine Drainage by Electrodialysis. Minerals Engineering, 40; 82–89

Bwapwa, J., A. Jaiyeola, and R. Chetty (2017). Bioremediation of Acid Mine Drainage using Algae Strains: A Review. South African Journal of Chemical Engineering, 24; 62–70

Chai, Y., P. Qin, J. Zhang, T. Li, Z. Dai, and Z. Wu (2020). Simultaneous Removal of Fe(II) and Mn(II) from Acid Mine Wastewater by Electro-Fenton Process. Process Safety and Environmental Protection, 143; 76–90

Chang, J., S. Deng, X. Li, Y. Li, J. Chen, and C. Duan (2022). Effective Treatment of Acid Mine Drainage by Constructed Wetland Column: Coupling Walnut Shell and its Biochar Product as the Substrates. Journal of Water Process Engineering, 49; 103116

Chen, G., Y. Ye, N. Yao, N. Hu, J. Zhang, and Y. Huang (2021a). A Critical Review of Prevention, Treatment, Reuse, and Resource Recovery from Acid Mine Drainage. Journal of Cleaner Production, 329; 129666

Chen, J., S. Deng, W. Jia, X. Li, and J. Chang (2021b). Removal of Multiple Heavy Metals from Mining-Impacted Water by Biochar-Filled Constructed Wetlands: Adsorption and Biotic Removal Routes. Bioresource Technology, 331; 125061

Chen, Y., J. Long, S. Chen, Y. Xie, Z. Xu, Z. Ning, G. Zhang, T. Xiao, M. Yu, and Y. Ke (2022). Multi Step Purification of Electrolytic Manganese Residue Leachate using Hydroxide Sedimentation, Struvite Precipitation, Chlorination and Coagulation: Advanced Removal of Manganese, Ammonium, and Phosphate. Science of the Total Environment, 805; 150237

de Moraes, M. L. B. and A. C. Q. Ladeira (2021). The Role of Iron in the Rare Earth Elements and Uranium Scavenging by Fe–Al-Precipitates in Acid Mine Drainage. Chemosphere, 277; 130131

Dean, A. P., S. Lynch, P. Rowland, B. D. Toft, J. K. Pittman, and K. N. White (2013). Natural Wetlands Are Efficient at Providing Long-Term Metal Remediation of Freshwater Systems Polluted by Acid Mine Drainage. Environmental science & technology, 47(21); 12029–12036

Deepa, A., P. Prakash, and B. K. Mishra (2019). Performance of Biochar-Based Filtration Bed for the Removal of Cr(VI) from Pre-Treated Synthetic Tannery Wastewater. Environmental Technology, 42; 257–269

Demers, I., M. Mbonimpa, M. Benzaazoua, M. Bouda, S. Awoh, S. Lortie, and M. Gagnon (2017). Use of Acid Mine Drainage Treatment Sludge by Combination with a Natural Soil as an Oxygen Barrier Cover for Mine Waste Reclamation: Laboratory Column Tests and Intermediate Scale Field Tests. Minerals Engineering, 107; 43–52

Dev, S., S. Roy, and J. Bhattacharya (2016). Understanding the Performance of Sulfate Reducing Bacteria Based Packed Bed Reactor by Growth Kinetics Study and Microbial Profiling. Journal of Environmental Management, 177; 101–110

Dlamini, C. L., L. A. De Kock, K. K. Kefeni, B. B. Mamba, and T. A. M. Msagati (2019). Polymeric Ion Exchanger Supported Ferric Oxide Nanoparticles as Adsorbents for Toxic Metal Ions from Aqueous Solutions and Acid Mine Drainage. Journal of Environmental Health Science and Engineering, 17; 719–730

Dong, S., X. Dou, D. Mohan, C. U. Pittman Jr, and J. Luo (2015). Synthesis of Graphene Oxide/Schwertmannite Nanocomposites and Their Application in Sb(V) Adsorption from Water. Chemical Engineering Journal, 270; 205–214

Du, T., A. Bogush, O. Mašek, S. Purton, and L. C. Campos (2022). Algae, Biochar and Bacteria for Acid Mine Drainage (AMD) Remediation: A Review. Chemosphere; 135284

El Qada, E. N., S. J. Allen, and G. M. Walker (2006). Adsorption of Methylene Blue Onto Activated Carbon Produced from Steam Activated Bituminous Coal: A Study of Equilibrium Adsorption Isotherm. Chemical Engineering Journal, 124(1-3); 103–110

Erdem, E., N. Karapinar, and R. Donat (2004). The Removal of Heavy Metal Cations by Natural Zeolites. Journal of Colloid and Interface Science, 280(2); 309–314

Etale, A., D. Nhlane, and H. Richards (2021). Graphene Oxide Nanosheets for Treatment of Mine Drainage Contaminated Water: The Effect of Phosphate Functionalisation on U(VI) Removal. Materials Today: Proceedings, 38; 647–651

Etteieb, S., M. Zolfaghari, S. Magdouli, K. K. Brar, and S. K. Brar (2021). Performance of Constructed Wetland for Selenium, Nutrient and Heavy Metals Removal from Mine Effluents. Chemosphere, 281; 130921

Evangelou, V. P. and Y. Zhang (1995). A Review: Pyrite Oxidation Mechanisms and Acid Mine Drainage Prevention. Critical Reviews in Environmental Science and Technology, 25(2); 141–199

Falayi, T., F. Ntuli, and F. N. Okonta (2019). Desilication of Calcined Pulverised Fly Ash and Use of Silicate Solution to Prepare a Mesoporous Silica Adsorbent for Heavy Metals in Acid Mine Drainage. International Journal of Environmental Technology and Management, 22(2-3); 155–176

Fazal, T., A. Razzaq, F. Javed, A. Hafeez, N. Rashid, U. S. Amjad, M. S. U. Rehman, A. Faisal, and F. Rehman (2020). Integrating Adsorption and Photocatalysis: A Cost Effective Strategy for Textile Wastewater Treatment using Hybrid Biochar-TiO2 Composite. Journal of Hazardous Materials, 390; 121623

Feng, G., J. Ma, X. Zhang, Q. Zhang, Y. Xiao, Q. Ma, and S. Wang (2019). Magnetic Natural Composite Fe3O4-Chitosan@ Bentonite for Removal of Heavy Metals from Acid Mine Drainage. Journal of Colloid and Interface Science, 538; 132–141

Foo, K. Y. and B. H. Hameed (2011). The Environmental Applications of Activated Carbon/Zeolite Composite Materials. Advances in Colloid and Interface Science, 162(1-2); 22–28

Foudhaili, T., O. Lefebvre, L. Coudert, and C. M. Neculita (2020). Sulfate Removal from Mine Drainage by Electro-coagulation as a Stand-Alone Treatment or Polishing Step. Minerals Engineering, 152; 106337

Foudhaili, T., T. V. Rakotonimaro, C. M. Neculita, L. Coudert, and O. Lefebvre (2019). Comparative Efficiency of Microbial Fuel Cells and Electrocoagulation for the Treatment of Iron-Rich Acid Mine Drainage. Journal of Environmental Chemical Engineering, 7(3); 103149

Gheju, M. and I. Balcu (2021). Sequential Abatement of FeII and CrVI Water Pollution by Use of Walnut Shell-Based Adsorbents. Processes, 9(2); 218

Ghorbel-Abid, I. and M. Trabelsi-Ayadi (2015). CompetitivevAdsorption of Heavy Metals on Local Landfill Clay. Arabian Journal of Chemistry, 8(1); 25–31

Gitari, M., L. Petrik, O. Etchebers, D. Key, E. Iwuoha, and C. Okujeni (2006). Treatment of Acid Mine Drainage with Fly Ash: Removal of Major Contaminants and Trace Elements. Journal of Environmental Science and Health Part A, 41(8); 1729–1747

Gopalakrishnan, I., R. Sugaraj Samuel, and K. Sridharan (2018). Nanomaterials-Based Adsorbents for Water and Wastewater Treatments. Emerging Trends of Nanotechnology in Environment and Sustainability: A Review-Based Approach; 89–98

Gugushe, A. S., A. Nqombolo, and P. N. Nomngongo (2019). Application of Response Surface Methodology and Desirability Function in the Optimization of Adsorptive Remediation of Arsenic from Acid Mine Drainage using Magnetic Nanocomposite: Equilibrium Studies and Application to Real Samples. Molecules, 24(9); 1792

Han, H., M. K. Rafiq, T. Zhou, R. Xu, O. Mašek, and X. Li (2019). A Critical Review of Clay-Based Composites with Enhanced Adsorption Performance for Metal and Organic Pollutants. Journal of Hazardous Materials, 369; 780–796

Han, J. S., S. H. Min, and Y. K. Kim (2005). Removal of Phosphorus using AMD-Treated Lignocellulosic Material. Forest Products Journal, 55(11); 48–53

Hermassi, M., M. Granados, C. Valderrama, C. Ayora, and J. L. Cortina (2022). Recovery of Rare Earth Elements from Acidic Mine Waters: An Unknown Secondary Resource. Science of the Total Environment, 810; 152258

Hong, M., L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan, and R. Li (2019). Heavy Metal Adsorption with Zeolites: The Role of Hierarchical Pore Architecture. Chemical Engineering Journal, 359; 363–372

Hou, D., J. Yu, and P. Wang (2019). Molecular Dynamics Modeling of the Structure, Dynamics, Energetics and Mechanical Properties of Cement-Polymer Nanocomposite. Composites Part B: Engineering, 162; 433–444

Houchins, C., G. J. Kleen, J. S. Spendelow, J. Kopasz, D. Peterson, N. L. Garland, D. L. Ho, J. Marcinkoski, K. E. Martin, and R. Tyler (2012). US DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications. Membranes, 2(4); 855–878

Hu, X., H. Yang, K. Tan, S. Hou, J. Cai, X. Yuan, Q. Lan, J. Cao, and S. Yan (2022). Treatment and Recovery of Iron from Acid Mine Drainage: A Pilot-Scale Study. Journal of Environmental Chemical Engineering, 10(1); 106974

Huang, A., D. Zhi, H. Tang, L. Jiang, S. Luo, and Y. Zhou (2020). Effect of Fe2+, Mn2+ Catalysts on the Performance of Electro-Fenton Degradation of Antibiotic Ciprofloxacin, and Expanding the Utilizing of Acid Mine Drainage. Science of the Total Environment, 720; 137560

Hussain, S. T. and S. A. K. Ali (2021). Removal of Heavy Metal by Ion Exchange using Bentonite Clay. Journal of Ecological Engineering, 22(1); 104–111

Igarashi, T., P. S. Herrera, H. Uchiyama, H. Miyamae, N. Iyatomi, K. Hashimoto, and C. B. Tabelin (2020). The two Step Neutralization Ferrite-Formation Process for Sustainable Acid Mine Drainage Treatment: Removal of Copper, Zinc and Arsenic, and the Influence of Coexisting Ions on Ferritization. Science of the Total Environment, 715; 136877

Igberase, E., P. Osifo, and A. Ofomaja (2018). Mathematical Modelling of Pb2+, Cu2+, Ni2+, Zn2+, Cr6+, and Cd2+ Ions Adsorption from a Synthetic Acid Mine Drainage Onto Chitosan Derivative in a Packed Bed Column. Environmental Technology, 39(24); 3203–3220

Ighalo, J. O., S. B. Kurniawan, K. O. Iwuozor, C. O. Aniagor, O. J. Ajala, S. N. Oba, F. U. Iwuchukwu, S. Ahmadi, and C. A. Igwegbe (2022). A Review of Treatment Technologies for the Mitigation of the Toxic Environmental Effects of Acid Mine Drainage (AMD). Process Safety and Environmental Protection, 157; 37–58

Jerez, J., A. C. Isaguirre, C. Bazán, L. D. Martinez, and S. Cerutti (2014). Determination of Scandium in Acid Mine Drainage by ICP-OES with Flow Injection On-Line Preconcentration using Oxidized Multiwalled Carbon Nanotubes. Talanta, 124; 89–94

Ji, L., W. Chen, L. Duan, and D. Zhu (2009). Mechanisms for Strong Adsorption of Tetracycline to Carbon Nanotubes: A Comparative Study using Activated Carbon and Graphite as Adsorbents. Environmental Science & Technology, 43(7); 2322–2327

Jiang, G. and X. Li (2020). A New Paradigm for Environmental Chemistry and Toxicology. Springer

Johnson, D. B., S. Rolfe, K. B. Hallberg, and E. Iversen (2001). Isolation and Phylogenetic Characterization of Acidophilic Microorganisms Indigenous to Acidic Drainage Waters at an Abandoned Norwegian Copper Mine. Environmental Microbiology, 3(10); 630–637

José, L. B. and A. C. Q. Ladeira (2021). Recovery and Separation of Rare Earth Elements from an Acid Mine Drainage-Like Solution using a Strong Acid Resin. Journal of Water Process Engineering, 41; 102052

Juve, J. M. A., F. M. S. Christensen, Y. Wang, and Z. Wei (2022). Electrodialysis for Metal Removal and Recovery: A Review. Chemical Engineering Journal, 435; 134857

Ka-ot, A. L. and S. R. Joshi (2022). Application of Acid and Heavy Metal Resistant Bacteria from Rat-Hole Coal Mines in Bioremediation Strategy. Journal of Basic Microbiology, 62(3-4); 480–488

Kadirvelu, K., M. Kavipriya, C. Karthika, N. Vennilamani, and S. Pattabhi (2004). Mercury(II) Adsorption by Activated Carbon Made from Sago Waste. Carbon, 42(4); 745–752

Kaur, G., S. J. Couperthwaite, B. W. Hatton-Jones, and G. J. Millar (2018). Alternative Neutralisation Materials for Acid Mine Drainage Treatment. Journal of Water Process Engineering, 22; 46–58

Kefeni, K. K., T. A. Msagati, and B. B. Mamba (2017). Acid Mine Drainage: Prevention, Treatment Options, and Resource Recovery: A Review. Journal of Cleaner Production, 151; 475–493

Keller, V., S. Stopić, B. Xakalashe, Y. Ma, S. Ndlovu, B. Mwewa, G. S. Simate, and B. Friedrich (2020). Effectiveness of Fly Ash and Red Mud as Strategies for Sustainable Acid Mine Drainage Management. Minerals, 10(8); 707

Kesieme, U. K. and H. Aral (2015). Application of Membrane Distillation and Solvent Extraction for Water and Acid Recovery from Acidic Mining Waste and Process Solutions. Journal of Environmental Chemical Engineering, 3(3); 2050–2056

Kim, J. Y., B. T. Lee, K. H. Shin, K. Y. Lee, K. W. Kim, K. G. An, Y. S. Park, J. Y. Kim, and Y. H. Kwon (2007). Ecological Health Assessment and Remediation of the Stream Impacted by Acid Mine Drainage of the Gwangyang Mine Area. Environmental Monitoring and Assessment, 129; 79–85

Koohestani, B., A. K. Darban, E. Darezereshki, P. Mokhtari, E. Yilmaz, and E. Yilmaz (2018). The Influence of Sodium and Sulfate Ions on Total Solidification and Encapsulation Potential of Iron Rich Acid Mine Drainage in Silica Gel. Journal of Environmental Chemical Engineering, 6(2); 3520–3527

Kubilay, Ş., R. Gürkan, A. Savran, and T. Şahan (2007). Removal of Cu(II), Zn(II) and Co(II) Ions from Aqueous Solutions by Adsorption Onto Natural Bentonite. Adsorption, 13; 41–51

Kumar, M. and K. Pakshirajan (2021). Continuous Removal and Recovery of Metals from Wastewater using Inverse Fluidized Bed Sulfidogenic Bioreactor. Journal of Cleaner Production, 284; 124769

Kurniawan, S. B., S. R. S. Abdullah, M. F. Imron, A. Ahmad, N. S. Mohd Said, N. F. Mohd Rahim, M. Mohammad Alnawajha, H. Abu Hasan, A. R. Othman, and I. F. Purwanti (2021). Potential of Valuable Materials Recovery from Aquaculture Wastewater: An Introduction to Resource Reclamation. Aquaculture Research, 52(7); 2954–2962

Lachowicz, J. I., G. R. Delpiano, D. Zanda, M. Piludu, E. Sanjust, M. Monduzzi, and A. Salis (2019). Adsorption of Cu2+ and Zn2+ on SBA-15 Mesoporous Silica Functionalized with Triethylenetetramine Chelating Agent. Journal of Environmental Chemical Engineering, 7(4); 103205

Lee, G., J. Han, M. Jang, and M. Kim (2022a). Long-Term Treatment of Acid Mine Drainage by Alkali Diffusion Ceramic Reactor: Simultaneous Metal Removal Mechanisms. Chemosphere, 298; 134186

Lee, Y., Y. Ren, M. Cui, Y. Zhou, O. Kwon, J. Ko, and J. Khim (2022b). Arsenic Adsorption Study in Acid Mine Drainage using Fixed Bed Column by Novel Beaded Adsorbent. Chemosphere, 291; 132894

Li, Q. and W. Zhang (2022). Process Development for Recovering Critical Elements from Acid Mine Drainage. Resources, Conservation and Recycling, 180; 106214

Li, R., Y. Liu, G. Lan, H. Qiu, B. Xu, Q. Xu, N. Sun, and L. Zhang (2021). Pb(II) Adsorption Characteristics of Magnetic GO-Hydroxyapatite and the Contribution of GO to Enhance its Acid Resistance. Journal of Environmental Chemical Engineering, 9(4); 105310

Li, W., Q. Zhou, and T. Hua (2010). Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review. International Journal of Chemical Engineering, 2010

Li, Y., M. Yue, J. Ye, T. Xu, and Y. Liu (2019). Walnut Shell Powder Can Limit Acid Mine Drainage Formation by Shaping the Bacterial Community Structure. Current Microbiology, 76; 1199–1206

Li, Z., Z. Ma, T. J. van der Kuijp, Z. Yuan, and L. Huang (2014). A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Science of the Total Environment, 468; 843–853

Liao, J., Z. Wen, X. Ru, J. Chen, H. Wu, and C. Wei (2016). Distribution and Migration of Heavy Metals in Soil and Crops Affected by Acid Mine Drainage: Public Health Implications in Guangdong Province, China. Ecotoxicology and Environmental Safety, 124; 460–469

Liu, H., H. Guo, O. Pourret, Z. Wang, M. Liu, W. Zhang, Z. Li, B. Gao, Z. Sun, and P. Laine (2022a). Geochemical Signatures of Rare Earth Elements and Yttrium Exploited by Acid Solution Mining Around an Ion-Adsorption Type Deposit: Role of Source Control and Potential for Recovery. Science of the Total Environment, 804; 150241

Liu, W., Y. Zhao, X. Hu, X. Li, M. Zhang, Z. Geng, Q. Wang, W. Cheng, and Y. Dong (2022b). A Combined Electrodialysis and Coal Dust Suppression System for Acid Mine Drainage Treatment and High Mechanical Hydrogel Dust Suppressant Generation. Water Cycle, 3; 126–132

Liu, Z. R. and S. Q. Zhou (2010). Adsorption of Copper and Nickel on Na-Bentonite. Process Safety and Environmental Protection, 88(1); 62–66

Lizama-Allende, K., J. Ayala, I. Jaque, and P. Echeverría (2021). The Removal of Arsenic and Metals from Highly Acidic Water in Horizontal Subsurface Flow Constructed Wetlands with Alternative Supporting Media. Journal of Hazardous Materials, 408; 124832

López, J., M. Reig, O. Gibert, E. Torres, C. Ayora, and J. L. Cortina (2018). Application of Nanofiltration for Acidic Waters Containing Rare Earth Elements: Influence of Transition Elements, Acidity and Membrane Stability. Desalination, 430; 33–44

Lu, J., L. Alakangas, Y. Jia, and J. Gotthardsson (2013). Evaluation of the Application of Dry Covers Over Carbonate-Rich Sulphide Tailings. Journal of Hazardous Materials, 244; 180–194

Luís, A., P. Teixeira, S. Almeida, L. Ector, J. Matos, and E. Ferreira da Silva (2009). Impact of Acid Mine Drainage (AMD) on Water Quality, Stream Sediments and Periphytic Diatom Communities in the Surrounding Streams of Aljustrel Mining Area (Portugal). Water, Air, and Soil Pollution, 200; 147–167

Lyu, H., J. Tang, M. Cui, B. Gao, and B. Shen (2020). Biochar/Iron (BC/Fe) Composites for Soil and Groundwater Remediation: Synthesis, Applications, and Mechanisms. Chemosphere, 246; 125609

Machodi, M. J. and M. O. Daramola (2019). Synthesis and Performance Evaluation of PES/Chitosan Membranes Coated with Polyamide for Acid Mine Drainage Treatment. Scientific Reports, 9(1); 1–14

Machodi, M. J. and M. O. Daramola (2020). Synthesis of PES and PES/Chitosan Membranes for Synthetic Acid Mine Drainage Treatment. Water SA, 46(1); 114–122

Magowo, E., C. Sheridan, and K. Rumbold (2023). Fermentable Sugars as Bioprocessing Feedstocks from Lignocellulosic Biomass Pretreated with Acid Mine Drainage. In Advances in Lignocellulosic Biofuel Production Systems. Elsevier, pages 161–178

Mäkitalo, M., C. Maurice, Y. Jia, and B. Öhlander (2014). Characterization of Green Liquor Dregs, Potentially Useful for Prevention of the Formation of Acid Rock Drainage. Minerals, 4(2); 330–344

Manohar, D., B. Noeline, and T. Anirudhan (2006). Adsorption Performance of Al-Pillared Bentonite Clay for the Removal of Cobalt(II) from Aqueous Phase. Applied Clay Science, 31(3 4); 194–206

Mariana, M., A. K. HPS, E. Mistar, E. B. Yahya, T. Alfatah, M. Danish, and M. Amayreh (2021). Recent Advances in Activated Carbon Modification Techniques for Enhanced Heavy Metal Adsorption. Journal of Water Process Engineering, 43; 102221

Martí-Calatayud, M. C., D. C. Buzzi, M. García-Gabaldón, E. Ortega, A. Bernardes, J. A. S. Tenório, and V. Pérez-Herranz (2014). Sulfuric Acid Recovery from Acid Mine Drainage by Means of Electrodialysis. Desalination, 343; 120–127

Martínez-Macias, M. d. R., M. A. Correa Murrieta, Y. Villegas Peralta, G. E. Dévora Isiordia, J. Álvarez Sánchez, J. Saldivar Cabrales, and R. G. Sánchez Duarte (2019). Uptake of Copper from Acid Mine Drainage by the Microalgae Nannochloropsis Oculata. Environmental Science and Pollution Research, 26; 6311–6318

Matsumoto, S., H. Shimada, T. Sasaoka, G. J. Kusuma, and R. S. Gautama (2016). Construction of Dry Cover System for Prevention of Acid Mine Drainage at Mine Waste Dump in Open Cast Coal Mines, Indonesia. Journal of Environmental Protection, 7(02); 160

Menzel, K., L. Barros, A. Garcia, R. Ruby Figueroa, and H. Estay (2021). Metal Sulfide Precipitation Coupled with Membrane Filtration Process for Recovering Copper from Acid Mine Drainage. Separation and Purification Technology, 270; 118721

Mkandawire, M. (2020). Opportunities and Challenges of ReMining Mine Water for Resources. Recovery of Byproducts from Acid Mine Drainage Treatment; 315–350

Mohan, D. and S. Chander (2001). Single Component and Multi-Component Adsorption of Metal Ions by Activated Carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(2-3); 183–196

Moncur, M. C., C. J. Ptacek, M. B. Lindsay, D. W. Blowes, and J. L. Jambor (2015). Long-Term Mineralogical and Geochemical Evolution of Sulfide Mine Tailings Under a Shallow Water Cover. Applied Geochemistry, 57; 178–193

Moreno-Barbosa, J. J., C. López-Velandia, A. d. P. Maldonado, L. Giraldo, and J. C. Moreno Piraján (2013). Removal of Lead(II) and Zinc(II) Ions from Aqueous Solutions by Adsorption Onto Activated Carbon Synthesized from Watermelon Shell and Walnut Shell. Adsorption, 19; 675–685

Motsi, T., N. Rowson, and M. Simmons (2009). Adsorption of Heavy Metals from Acid Mine Drainage by Natural Zeolite. International Journal of Mineral Processing, 92(1-2); 42–48

Muedi, K. L., H. G. Brink, V. Masindi, and J. Maree (2021). Effective Removal of Arsenate from Wastewater using Aluminium Enriched Ferric Oxide-Hydroxide Recovered from Authentic Acid Mine Drainage. Journal of Hazardous Materials, 414; 125491

Muhammad, S. N., F. M. Kusin, M. S. Md Zahar, F. Mohamat Yusuff, and N. Halimoon (2017). Passive Bioremediation Technology Incorporating Lignocellulosic Spent Mushroom Compost and Limestone for Metal-and Sulfate-Rich Acid Mine Drainage. Environmental Technology, 38(16); 2003–2012

Nariyan, E., C. Wolkersdorfer, and M. Sillanpää (2018). Sulfate Removal from Acid Mine Water from the Deepest Active European Mine by Precipitation and Various Electrocoagulation Configurations. Journal of Environmental Management, 227; 162–171

Neculita, C. M. and E. Rosa (2019). A Review of the Implications and Challenges of Manganese Removal from Mine Drainage. Chemosphere, 214; 491–510

Nishimoto, N., Y. Yamamoto, S. Yamagata, T. Igarashi, and S. Tomiyama (2021). Acid Mine Drainage Sources and Impact on Groundwater at the Osarizawa Mine, Japan. Minerals, 11(9); 998

Nunez-Gomez, D., C. Rodrigues, F. R. Lapolli, and M. A. Lobo-Recio (2019). Adsorption of Heavy Metals from Coal Acid Mine Drainage by Shrimp Shell Waste: Isotherm and Continuous-Flow Studies. Journal of Environmental Chemical Engineering, 7(1); 102787

Oberholzer, M. M., P. J. Oberholster, L. L. Ndlela, A. M. Botha, and J. C. Truter (2022). Assessing Alternative Suporting Organic Materials for the Enhancement of Water Reuse in Subsurface Constructed Wetlands Receiving Acid Mine Drainage. Recycling, 7(3); 41

Oliva, J., J. Cama, J. Cortina, C. Ayora, and J. De Pablo (2012). Biogenic Hydroxyapatite (Apatite II™) Dissolution Kinetics and Metal Removal from Acid Mine Drainage. Journal of Hazardous Materials, 213; 7–18

Oncel, M., A. Muhcu, E. Demirbas, and M. Kobya (2013). A Comparative Study of Chemical Precipitation and Electrocoagulation for Treatment of Coal Acid Drainage Wastewater. Journal of Environmental Chemical Engineering, 1(4); 989–995

Orakwue, E. O., V. Asokbunyarat, E. R. Rene, P. N. Lens, and A. Annachhatre (2016). Adsorption of Iron(II) from Acid Mine Drainage Contaminated Groundwater using Coal Fly Ash, Coal Bottom Ash, and Bentonite Clay. Water, Air, & Soil Pollution, 227; 1–12

Outram, J. G., S. J. Couperthwaite, and G. J. Millar (2018). Enhanced Removal of High Mn(II) and Minor Heavy Metals from Acid Mine Drainage using Tunnelled Manganese Oxides. Journal of Environmental Chemical Engineering, 6(2); 3249–3261

Park, I., C. B. Tabelin, S. Jeon, X. Li, K. Seno, M. Ito, and N. Hiroyoshi (2019). A Review of Recent Strategies for Acid Mine Drainage Prevention and Mine Tailings Recycling. Chemosphere, 219; 588–606

Pat-Espadas, A. M., R. Loredo Portales, L. E. Amabilis-Sosa, G. Gómez, and G. Vidal (2018). Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water, 10(11); 1685

Pino, L., C. Vargas, A. Schwarz, and R. Borquez (2018). Influence of Operating Conditions on the Removal of Metals and Sulfate from Copper Acid Mine Drainage by Nanofiltration. Chemical Engineering Journal, 345; 114–125

Qian, G., R. C. Schumann, J. Li, M. D. Short, R. Fan, Y. Li, N. Kawashima, Y. Zhou, R. S. C. Smart, and A. R. Gerson (2017). Strategies for Reduced Acid and Metalliferous Drainage by Pyrite Surface Passivation. Minerals, 7(3); 42

Qiu, X.-j., T. Jia, T. Jun, H.-p. Hu, X.-b. Ji, and J.-g. Hu (2021). Selective Recovery of Cu(II) Through Polymer Inclusion Membranes Mediated with 2-Aminomethylpyridine Derivatives. Transactions of Nonferrous Metals Society of China, 31(11); 3591–3601

Qu, Z., F. Sun, X. Liu, J. Gao, Z. Qie, and G. Zhao (2018). The Effect of Nitrogen-Containing Functional Groups on SO2 Adsorption on Carbon Surface: Enhanced Physical Adsorption Interactions. Surface Science, 677; 78–82

Quatrini, R. and D. B. Johnson (2018). Microbiomes in Extremely Acidic Environments: Functionalities and Interactions that Allow Survival and Growth of Prokaryotes at Low pH. Current Opinion in Microbiology, 43; 139–147

Radić, S., V. Vujčić, Ž. Cvetković, P. Cvjetko, and V. Oreščanin (2014). The Efficiency of Combined CaO/Electrochemical Treatment in Removal of Acid Mine Drainage Induced Toxicity and Genotoxicity. Science of the Total Environment, 466; 84–89

Rahimi, E. and N. Mohaghegh (2017). New Hybrid Nanocomposite of Copper Terephthalate MOF-Graphene Oxide: Synthesis, Characterization and Application as Adsorbents for Toxic Metal Ion Removal from Sungun Acid Mine Drainage. Environmental Science and Pollution Research, 24; 22353–22360

Ramasamy, D. L., V. Puhakka, S. Iftekhar, A. Wojtuś, E. Repo, S. B. Hammouda, E. Iakovleva, and M. Sillanpää (2018). Nand O-Ligand Doped Mesoporous Silica-Chitosan Hybrid Beads for the Efficient, Sustainable and Selective Recovery of Rare Earth Elements (REE) from Acid Mmine Drainage (AMD): Understanding the Significance of Physical Modification and Conditioning of the Polymer. Journal of Hazardous Materials, 348; 84–91

Rambabu, K., F. Banat, Q. M. Pham, S. H. Ho, N. Q. Ren, and P. L. Show (2020). Biological Remediation of Acid Mine Drainage: Review of Past Trends and Current Outlook. Environmental Science and Ecotechnology, 2; 100024

Ramokgopa, S. K., K. Sikhwivhilu, R. M. Moutloali, and K. Moothi (2021). Process Optimisation Through Response Surface Methodology for Treatment of Acid Mine Drainage using Carbon Nanotubes-Infused thin Film Nanocomposite Membranes. Physics and Chemistry of the Earth, Parts A/B/C, 124; 103008

Rao, R. A. K. and M. Kashifuddin (2016). Adsorption Studies of Cd(II) on Ball Clay: Comparison with Other Natural Clays. Arabian Journal of Chemistry, 9; S1233–S1241

Ren, K., J. Zeng, J. Liang, D. Yuan, Y. Jiao, C. Peng, and X. Pan (2021). Impacts of Acid Mine Drainage on Karst Aquifers: Evidence from Hydrogeochemistry, Stable Sulfur and Oxygen Isotopes. Science of the Total Environment, 761; 143223

Rios, C. A., C. D. Williams, and C. L. Roberts (2008). Removal of Heavy Metals from Acid Mine Drainage (AMD) using Coal Fly Ash, Natural Clinker and Synthetic Zeolites. Journal of Hazardous Materials, 156(1-3); 23–35

Robinson-Lora, M. A. and R. A. Brennan (2011). Anaerobic Precipitation of Manganese and Co Existing Metals in Mine Impacted Water Treated with Crab Shell-Associated Minerals. Applied Geochemistry, 26(5); 853–862

Rodríguez, C., C. Tapia, E. Leiva-Aravena, and E. Leiva (2020). Graphene Oxide–ZnO Nanocomposites for Removal of Aluminum and Copper Ions from Acid Mine Drainage Wastewater. International Journal of Environmental Research and Public Health, 17(18); 6911

Rose, P., G. Boshoff, R. Van Hille, L. Wallace, K. Dunn, and J. Duncan (1998). An Integrated Algal Sulphate Reducing High Rate Ponding Process for the Treatment of Acid Mine Drainage Wastewaters. Biodegradation, 9; 247–257

Ryu, S., G. Naidu, M. A. H. Johir, Y. Choi, S. Jeong, and S. Vigneswaran (2019). Acid Mine Drainage Treatment by Integrated Submerged Membrane Distillation–Sorption System. Chemosphere, 218; 955–965

Ryu, S., G. Naidu, H. Moon, and S. Vigneswaran (2020). Selective Copper Recovery by Membrane Distillation and Adsorption System from Synthetic Acid Mine Drainage. Chemosphere, 260; 127528

Sabina, R.-O., E. S. Santos, and M. M. Abreu (2019). Accumulation of Mn and Fe in Aromatic Plant Species from the Abandoned Rosalgar Mine and Their Potential Risk to Human Health. Applied Geochemistry, 104; 42–50

Sahoo, P., S. Tripathy, M. Panigrahi, and S. M. Equeenuddin (2013). Evaluation of the Use of an Alkali Modified Fly Ash as a Potential Adsorbent for the Removal of Metals from Acid Mine Drainage. Applied Water Science, 3; 567–576

Shen, C., G. Zhang, K. Li, and C. Yang (2022). A Pathway of the Generation of Acid Mine Drainage and Release of Arsenic in the Bioleaching of Orpiment. Chemosphere, 298; 134287

Shi, M., X. Min, C. Tian, T. Hao, S. Zhu, Y. Ge, Q. Wang, X. Yan, and Z. Lin (2022). Mechanisms of Pb(II) Coprecipitation with Natrojarosite and its Behavior During Acid Dissolution. Journal of Environmental Sciences, 122; 128–137

Shin, E., J. Han, and S. Min (2004). Removal of Phosphorus from Water using Lignocellulosic Material Modified with Iron Species from Acid Mine Drainage. Environmental Technology, 25(2); 185–191

Sibrell, P. and T. Tucker (2012). Fixed Bed Sorption of Phosphorus from Wastewater using Iron Oxide-Based Media Derived from Acid Mine Drainage. Water, Air, & Soil Pollution, 223; 5105-5117

Silva, T. L., S. Morales-Torres, C. M. Esteves, A. R. Ribeiro, O. C. Nunes, J. L. Figueiredo, and A. M. Silva (2018). Desalination and Removal of Organic Micropollutants and Microorganisms by Membrane Distillation. Desalination, 437; 121–132

Singh, S. and S. Chakraborty (2020). Performance of Organic Substrate Amended Constructed Wetland Treating Acid Mine Drainage (AMD) of North-Eastern India. Journal of Hazardous Materials, 397; 122719

Singh, S. and S. Chakraborty (2021). Bioremediation of Acid Mine Drainage in Constructed Wetlands: Aspect of Vegetation (Typha latifolia), Loading Rate and Metal Recovery. Minerals Engineering, 171; 107083

Street, F. (2016). Removal of Fe, Zn and Mn Ions from Acidic Mine Drainage using Hydroxyapatite. Journal of Environmental Protection and Ecology, 17(4); 1472–1480

Stylianou, M., E. Montel, A. Zissimos, I. Christoforou, K. Dermentzis, and A. Agapiou (2022). Removal of Toxic Metals and Anions from Acid Mine Drainage (AMD) by Electrocoagulation: The Case of North Mathiatis Open Cast Mine. Sustainable Chemistry and Pharmacy, 29; 100737

Sun, M., X.-R. Ru, and L.-F. Zhai (2015a). In-Situ Fabrication of Supported Iron Oxides from Synthetic Acid Mine Drainage: High Catalytic Activities and Good Stabilities Towards Electro Fenton Reaction. Applied Catalysis B: Environmental, 165; 103–110

Sun, M., W. Song, L. F. Zhai, X. R. Ru, and Y. Z. Cui (2013). Elucidating Electro-Oxidation Kinetics of Fe(II) in the Anode of Air–Cathode Fuel Cells from an Fe(II) Speciation Perspective. Chemical Engineering Journal, 228; 781–789

Sun, M., N. N. Wu, L. F. Zhai, and X. R. Ru (2015b). Manipulate an Air–Cathode Fuel Cell Toward Recovering Highly Active Heterogeneous Electro-Fenton Catalyst from the Fe(II) in Acid Mine Drainage. Minerals Engineering, 84; 1–7

Sun, Y. M., L. F. Zhai, M. F. Duan, and M. Sun (2018). In Situ Fabrication of Electro-Fenton Catalyst from Fe2+ in Acid Mine Drainage: Influence of Coexisting Metal Cations. ACS Sustainable Chemistry & Engineering, 6(11); 14154–14161

Tabelin, C. B., R. D. Corpuz, T. Igarashi, M. Villacorte-Tabelin, R. D. Alorro, K. Yoo, S. Raval, M. Ito, and N. Hiroyoshi (2020). Acid Mine Drainage Formation and Arsenic Mobility Under Strongly Acidic Conditions: Importance of Soluble Phases, Iron Oxyhydroxides/Oxides and Nature of Oxidation Layer on Pyrite. Journal of Hazardous Materials, 399; 122844

Thakur, A. K., R. Kumar, P. Chaudhari, and R. Shankar (2021). Removal of Heavy Metals using Bentonite Clay and Inorganic Coagulants. Removal of Emerging Contaminants Through Microbial Processes; 47–69

Thomas, G., C. Sheridan, and P. E. Holm (2022). A Critical Review of Phytoremediation for Acid Mine Drainage-Impacted Environments. Science of the Total Environment, 811; 152230

Tolvanen, A., P. Eilu, A. Juutinen, K. Kangas, M. Kivinen, M. Markovaara-Koivisto, A. Naskali, V. Salokannel, S. Tuulentie, and J. Similä (2019). Mining in the Arctic Environment–A Review from Ecological, Socioeconomic and Legal Perspectives. Journal of Environmental Management, 233; 832–844

Tong, L., R. Fan, S. Yang, and C. Li (2021). Development and Status of the Treatment Technology for Acid Mine Drainage. Mining, Metallurgy & Exploration, 38; 315–327

Tu, Z., J. Wan, C. Guo, C. Fan, T. Zhang, G. Lu, J. R. Reinfelder, and Z. Dang (2017). Electrochemical Oxidation of Pyrite in pH 2 Electrolyte. Electrochimica Acta, 239; 25–35

Vasquez, Y., C. M. Neculita, G. Caicedo, J. Cubillos, J. Franco, M. Vásquez, A. Hernández, and F. Roldan (2022). Passive Multi-Unit Field-Pilot for Acid Mine Drainage Remediation: Performance and Environmental Assessment of Post-Treatment Solid Waste. Chemosphere, 291; 133051

Verplanck, P. L., D. K. Nordstrom, H. E. Taylor, and B. A. Kimball (2004). Rare Earth Element Partitioning Between Hydrous Ferric Oxides and Acid Mine Water During Iron Oxidation. Applied Geochemistry, 19(8); 1339–1354

Vital, B., J. Bartacek, J. Ortega-Bravo, and D. Jeison (2018). Treatment of Acid Mine Drainage by Forward Osmosis: Heavy Metal Rejection and Reverse Flux of Draw Solution Constituents. Chemical Engineering Journal, 332; 85–91

Wang, H., M. Zhang, J. Xue, Q. Lv, J. Yang, and X. Han (2021a). Performance and Microbial Response in a Multi-Stage Constructed Wetland Microcosm Co-Treating Acid Mine Drainage and Domestic Wwastewater. Journal of Environmental Chemical Engineering, 9(6); 106786

Wang, J. and X. Guo (2020). Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere, 258; 127279

Wang, Y., Y. He, A. Gong, L. Qiu, M. Zhang, M. Traore, X. Zhan, Y. Li, Y. Bai, and Y. Liu (2023). Selective Recovery of Rare Earth Metals from Acid Mine Drainage by Pyrrolidinediglycolamide Silica Column. Journal of Environmental Chemical Engineering; 110091

Wang, Y., J. Wang, Z. Li, H. Wang, X. He, and C. Wang (2021b). A Novel Method Based on Membrane Distillation for Treating Acid Mine Drainage: Recovery of Water and Utilization of Iron. Chemosphere, 279; 130605

Wibowo, Y., D. Muhammad, M. Naswir, and B. Muljadi (2020). Low-Cost Modified Reactor to Produce Biochar and Clamshell as Alternative Materials from Acid Mine Drainage Problem Solving. In IOP Conference Series: Earth and Environmental Science, volume 483. IOP Publishing, page 012031

Wibowo, Y. G., M. Naswir, and B. S. Ramadan (2022a). Performance of a Novel Biochar Clamshell Composite for Real Acid Mine Drainage Treatment. Bioresource Technology Reports, 17; 100993

Wibowo, Y. G., A. T. Nugraha, and A. Rohman (2023a). Phytoremediation of Several Wastewater Sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environmental Nanotechnology, Monitoring & Management; 100781

Wibowo, Y. G., B. S. Ramadan, S. Sudibyo, H. Safitri,A. Rohman, and H. Syarifuddin (2023b). Efficient Remediation of Acid Mine Drainage Through Sustainable and Economical Biochar-CaO Composite derived from solid waste. Environment, Development and Sustainability; 1–24

Wibowo, Y. G., H. Safitri, I. B. I. Malik, and S. Priyanto (2022b). Alternative Low-Cost Treatment for Real Acid Mine Drainage: Performance, Bioaccumulation, Translocation, Economic, Post Harvest, and Bibliometric Analyses. Sustainability, 14(22); 15404

Wibowo, Y. G., H. Safitri, and B. S. Ramadan (2022c). Adsorption Test using Ultra-Fine Materials on Heavy Metals Removal. Bioresource Technology Reports, 19; 101149

Wilfong, W. C., T. Ji, Y. Duan, F. Shi, Q. Wang, and M. L. Gray (2022). Critical Review of Functionalized Silica Sorbent Strategies for Selective Extraction of Rare Earth Elements from Acid Mine Drainage. Journal of Hazardous Materials, 424; 127625

Win, T. S., S. Dwiki, S. Mastumoto, and G. J. Kusuma (2020). Application of Fly Ash and Organic Material as Dry Cover System in Prevention of Acid Mine Drainage Generation. Journal of Geoscience and Environment Protection, 8(5); 56–64

Wingenfelder, U., B. Nowack, G. Furrer, and R. Schulin (2005). Adsorption of Pb and Cd by Amine-Modified Zeolite. Water Research, 39(14); 3287–3297

Wu, S., P. Kuschk, A. Wiessner, J. Müller, R. A. Saad, and R. Dong (2013). Sulphur Transformations in Constructed Wetlands for Wastewater Treatment: A Review. Ecological Engineering, 52; 278–289

Wu, S., J. Vymazal, and H. Brix (2019). Critical Review: Biogeochemical Networking of Iron in Constructed Wetlands for Wastewater Treatment. Environmental Science & Technology, 53(14); 7930–7944

Xin, R., J. F. Banda, C. Hao, H. Dong, L. Pei, D. Guo, P. Wei, Z. Du, Y. Zhang, and H. Dong (2021). Contrasting Seasonal Variations of Geochemistry and Microbial Community in Two Adjacent Acid Mine Drainage Lakes in Anhui Province, China. Environmental Pollution, 268; 115826

Yang, J. S., M. J. Kwon, Y. T. Park, and J. Choi (2015). Adsorption of Arsenic from Aqueous Solutions by Iron Oxide Coated Sand Fabricated with Acid Mine Drainage. Separation Science and Technology, 50(2); 267–275

Yu, W. H., N. Li, D. S. Tong, C. H. Zhou, C. X. C. Lin, and C. Y. Xu (2013). Adsorption of Proteins and Nucleic Acids on Clay Minerals and Their Interactions: A Review. Applied Clay Science, 80; 443-452

Zeng, S., J. Li, R. Schumann, and R. Smart (2013). Effect of pH and Dissolved Silicate on the Formation of Surface Passivation Layers for Reducing Pyrite Oxidation. Computational Water, Energy, and Environmental Engineering, 2(02); 50

Zhai, L.-F., Y.-M. Sun, H.-Y. Guo, and M. Sun (2019). Surface Modification of Graphite Support as an Effective Strategy to Enhance the Electro-Fenton Activity of Fe3O4/Graphite Composites In Situ Fabricated from Acid Mine Drainage using an Air-Cathode Fuel Cell. ACS Sustainable Chemistry & Engineering, 7(9); 8367–8374

Zhai, L.-F., Z.-H. Tong, M. Sun, W. Song, S. Jin, and H. Harada (2013). Enhanced Electricity Generation from Electrochemical Oxidation of FeII in an Air–Cathode Fuel Cell Amended with Chelating Anions. Industrial & Engineering Chemistry Research, 52(6); 2234–2240

Zhan, X., L. Xiao, and B. Liang (2019). Removal of Pb II) from Acid Mine Drainage with Bentonite Steel Slag Composite Particles. Sustainability, 11(16); 4476

Zhang, D., R. Cao, Y. Song, Y. Wang, P. Zhang, Y. Wang, F. Xiao, S. Wang, and Y. Jia (2022). Molecular Structures of Dissolved and Colloidal AsV–FeIII Complexes and Their Roles in the Mobilization of AsV Under Strongly Acidic Conditions. Journal of Hazardous Materials, 430; 128266

Zhao, H., B. Xia, J. Qin, and J. Zhang (2012). Hydrogeochemical and Mineralogical Characteristics Related to Heavy Metal Attenuation in a Stream Polluted by Acid Mine Drainage: A Case Study in Dabaoshan Mine, China. Journal of Environmental Sciences, 24(6); 979–989

Zubair, A., N. Abdullah, R. Ibrahim, and A. Rachma (2020). Effectivity of Constructed Wetland using Typha angustifolia in Analyzing the Decrease of Heavy Metal (Fe) in Acid Mine Drainage. In IOP Conference Series: Earth and Environmental Science, volume 419. IOP Publishing, page 012160

Authors

Yudha Gusti Wibowo
yudha.wibowo@ta.itera.ac.id (Primary Contact)
Muhammad Fauzul Imron
Setyo Budi Kurniawan
Bimastyaji Surya Ramadan
Tarmizi Taher
Alvian Hayu Sudibya
Hutwan Syarifuddin
Khairurrijal Khairurrijal
Jarwinda
Author Biographies

Bimastyaji Surya Ramadan, Department of Environmental Engineering, Universitas Diponegoro, Semarang, 50275, Indonesia

Department of Environmental Engineering, Universitas Diponegoro, Semarang, Indonesia

Tarmizi Taher, Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung, 35365, Indonesia

Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung-35365, Indonesia

Hutwan Syarifuddin, Postgraduate Program of Environmental Science, Universitas Jambi, Jambi, 36361, Indonesia

Postgraduate Program of Environmental Science, Universitas Jambi, Jambi, Indonesia

Wibowo, Y. . G., Imron, M. F., Kurniawan, S. B. ., Ramadan, B. S. ., Taher, T., Sudibya, . A. H. ., Syarifuddin, H. ., Khairurrijal, . K. ., & Jarwinda. (2023). Emerging Strategies for Mitigating Acid Mine Drainage Formation and Environmental Impacts: A Comprehensive Review of Recent Advances. Science and Technology Indonesia, 8(4), 516–541. https://doi.org/10.26554/sti.2023.8.4.516-541

Article Details

Most read articles by the same author(s)

1 2 > >>