Photosynthetica 2022, 60(1):10-20 | DOI: 10.32615/ps.2021.054

Differences in susceptibility to photoinhibition do not determinegrowth rate under moderate light in batch or turbidostat - a studywith five green algae

H. MATTILA1, D. VALEV1, K.B. MISHRA2, V. HAVURINNE1, O. VIRTANEN1, M. ANTINLUOMA1, E. TYYSTJÄRVI1
1 Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
2 Global Change Research Institute of the Czech Academy of Sciences, Bìlidla 986, 4a, 603 00 Brno, Czech Republic

To understand growth limitations of photosynthetic microorganisms, and to investigate whether batch growth or certain photosynthesis-related parameters predict a turbidostat (continuous growth at constant biomass concentration) growth rate, five green algal species were grown in a photobioreactor in batch and turbidostat conditions and their susceptibilities to photoinhibition of photosystem II as well as several photosynthetic parameters were measured. Growth rates during batch and turbidostat modes varied independently of each other; thus, a growth rate measured in a batch cannot be used to determine the continuous growth rate. Greatly different photoinhibition susceptibilities in tested algae suggest that different amounts of energy were invested in repair. However, photoinhibition tolerance did not necessarily lead to a fast growth rate at a moderate light intensity. Nevertheless, we report an inverse relationship between photoinhibition tolerance and minimum saturating irradiance, suggesting that fast electron transfer capacity of PSII comes with the price of reduced photoinhibition tolerance.

Additional key words: Chlorococcum novae-angliae; Desmodesmus quadricauda; Ettlia oleoabundans; microalga; photodamage; photoinactivation; rapid light curve; Scenedesmus ecornis; Scenedesmus obliquus.

Received: June 8, 2021; Revised: October 18, 2021; Accepted: November 11, 2021; Prepublished online: December 2, 2021; Published: March 18, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
MATTILA, H., VALEV, D., MISHRA, K.B., HAVURINNE, V., VIRTANEN, O., ANTINLUOMA, M., & TYYSTJÄRVI, E. (2022). Differences in susceptibility to photoinhibition do not determinegrowth rate under moderate light in batch or turbidostat - a studywith five green algae. Photosynthetica60(SPECIAL ISSUE 2022), 10-20. doi: 10.32615/ps.2021.054
Download citation

Supplementary files

Download fileMattila_2753_supplement.docx

File size: 93.95 kB

References

  1. Barbera E., Grandi A., Borella L. et al.: Continuous cultivation as a method to assess the maximum specific growth rate of photosynthetic organisms. - Front. Bioeng. Biotechnol. 7: 274, 2019. Go to original source...
  2. Barranguet C., Kromkamp J.: Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. - Mar. Ecol. Prog. Ser. 204: 39-52, 2000. Go to original source...
  3. Borowitzka M.A., Vonshak A.: Scaling up microalgal cultures to commercial scale. - Eur. J. Phycol. 52: 407-418, 2017. Go to original source...
  4. Campbell D.A., Serôdio J.: Photoinhibition of photosystem II in phytoplankton: processes and patterns. - In: Larkum A., Grossman A., Raven J. (ed.): Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes). Vol. 45. Pp. 329-365. Springer, Cham 2020. Go to original source...
  5. Eilers P.H.C., Peeters J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. - Ecol. Model. 42: 199-215, 1988. Go to original source...
  6. Flynn K.J.: Going for the slow burn: why should possession of a low maximum growth rate be advantageous for microalgae? - Plant Ecol. Divers. 2: 179-189, 2009. Go to original source...
  7. García-Cubero R., Kleinegris D.M.M., Barbosa M.J.: Predicting biomass and hydrocarbon productivities and colony size in continuous cultures of Botryococcus braunii showa. - Bioresource Technol. 340: 125653, 2021. Go to original source...
  8. Grobbelaar J.U., Nedbal L., Tichý V.: Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. - J. Appl. Phycol. 8: 335-343, 1996. Go to original source...
  9. Hindersin S., Leupold M., Kerner M., Hanelt D.: Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors. - Bioprocess Biosyst. Eng. 36: 345-355, 2013. Go to original source...
  10. Inskeep W.P., Bloom P.R.: Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. - Plant Physiol. 77: 483-485, 1985. Go to original source...
  11. Komenda J.: Photosystem 2 photoinactivation and repair in the Scenedesmus cells treated with herbicides DCMU and BNT and exposed to high irradiance. - Photosynthetica 35: 477-480, 1998. Go to original source...
  12. Levasseur W., Taidi B., Lacombe R. et al.: Impact of seconds to minutes photoperiods on Chlorella vulgaris growth rate and chlorophyll a and b content. - Algal Res. 36: 10-16, 2018. Go to original source...
  13. Li G., Campbell D.A.: Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana. - PLoS ONE 8: e55562, 2013. Go to original source...
  14. Miyata K., Noguchi K., Terashima I.: Cost and benefit of the repair of photodamaged photosystem II in spinach leaves: roles of acclimation to growth light. - Photosynth. Res. 113: 165-180, 2012. Go to original source...
  15. Murata N., Nishiyama Y.: ATP is a driving force in the repair of photosystem II during photoinhibition. - Plant Cell Environ. 41: 285-299, 2018. Go to original source...
  16. Murphy C.D., Roodvoets M.S., Austen E.J. et al.: Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. - PLoS ONE 12: e0168991, 2017. Go to original source...
  17. Nath K., Jajoo A., Poudyal R.S. et al.: Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. - FEBS Lett. 587: 3372-3381, 2013. Go to original source...
  18. Neale P.J., Melis A.: Algal photosynthetic membrane complexes and the photosynthesis-irradiance curve: a comparison of light-adaptation responses in Chlamydomonas reinhardtii (Chlorophyta). - J. Phycol. 22: 531-538, 1986. Go to original source...
  19. Pätsikkä E., Kairavuo M., ©er¹en F. et al.: Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. -Plant Physiol. 129: 1359-1367, 2002. Go to original source...
  20. Raven J.A.: The cost of photoinhibition. - Physiol. Plantarum 142: 87-104, 2011. Go to original source...
  21. Rippka R., Deruelles J., Waterbury J.B. et al.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. - Microbiology 111: 1-61, 1979. Go to original source...
  22. Schreiber U., Klughammer C., Kolbowski J.: Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. - Photosynth. Res. 113: 127-144, 2012. Go to original source...
  23. Serôdio J., Campbell D.A.: Photoinhibition in optically thick samples: effects of light attenuation on chlorophyll fluorescence-based parameters. - J. Theor. Biol. 513: 110580, 2021. Go to original source...
  24. Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: Structural and functional dynamics of the closed reaction center. - Plant Cell 33: 1286-1302, 2021. Go to original source...
  25. Stensjö K., Vavitsas K., Tyystjärvi T.: Harnessing transcription for bioproduction in cyanobacteria. - Physiol. Plantarum 162: 148-155, 2018. Go to original source...
  26. Su Y., Song K., Zhang P. et al.: Progress in microalgae biofuel's commercialization. - Renew. Sust. Energ. Rev. 74: 402-411, 2017. Go to original source...
  27. Treves H., Raanan H., Kedem I. et al.: The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. - New Phytol. 210: 1229-1243, 2016. Go to original source...
  28. Tyystjärvi E.: Photoinhibition of photosystem II. - In: Jeon K.W. (ed.): International Review of Cell and Molecular Biology. Vol. 300. Pp. 243-303. Elsevier, Amsterdam 2013. Go to original source...
  29. Valev D., Silva Santos H., Tyystjärvi E.: Stable wastewater treatment with Neochloris oleoabundans in a tubular photobioreactor. - J. Appl. Phycol. 32: 399-410, 2020. Go to original source...
  30. Virtanen O., Khorobrykh S., Tyystjärvi E.: Acclimation of Chlamydomonas reinhardtii to extremely strong light. - Photosynth. Res. 147: 91-106, 2021. Go to original source...
  31. Virtanen O., Valev D., Kruse O. et al.: Photoinhibition and continuous growth of the wild-type and a high-light tolerant strain of Chlamydomonas reinhardtii. - Photosynthetica 57: 617-626, 2019. Go to original source...