Photosynthetica 2019, 57(2):361-366 | DOI: 10.32615/ps.2019.039

Extended temperature optimum of photosynthetic reaction centers in Rhodobacterales

D. KAFTAN1,2, H. MEDOVÁ1, V. SELYANIN1, K. KOPEJTKA1,2, M. KOBLÍŽEK1,2
1 Centre Algatech, Institute of Microbiology CAS, CZ-37981 Třeboň, Czech Republic
2 Faculty of Science, University of South Bohemia in České Budějovice, CZ-37005, Czech Republic

Temperature is one of the most important physical factors affecting microbial and biochemical processes. We investigated the performance of photosynthetic apparatus of marine photoheterotrophic bacterium Dinoroseobacter shibae under various temperatures. The primary photochemistry and electron transport was measured using variable infra-red fluorometry in the cells grown between 8-35°C. It was found that the photosynthetic electron transport had a broad temperature optimum between 25-50°C. Moreover, the primary charge separation stayed functional even after rising temperature up to 55°C. The same phenomenon was observed also in other phototrophic Rhodobacterales. The psychrotolerant bacterium Roseisalinus antarcticus reached its maximum electron transport rate at 48°C, 30°C above its growth temperature. We propose that the extended temperature stability may be crucial to maintain photosynthetic function under situation when photosynthetic membranes heat up above their ambient temperature due to the heat dissipation of the excess light energy.

Additional key words: aerobic anoxygenic phototrophs; Rhodobaca barguzinensis; Roseobacter; variable fluorescence.

Received: July 31, 2018; Accepted: November 14, 2018; Prepublished online: February 4, 2019; Published: May 16, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
KAFTAN, D., MEDOVÁ, H., SELYANIN, V., KOPEJTKA, K., & KOBLÍŽEK, M. (2019). Extended temperature optimum of photosynthetic reaction centers in Rhodobacterales. Photosynthetica57(2), 361-366. doi: 10.32615/ps.2019.039
Download citation

References

  1. Alarico S., Rainey F.A., Empadinhas N. et al.: Rubritepida flocculans gen. nov., sp. nov., a new slightly thermophilic member of the alpha-1 subclass of the Proteobacteria. - Syst. Appl. Microbiol. 25: 198-206, 2002. Go to original source...
  2. Biebl H., Allgaier M., Tindall B.J. et al.: Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. - Int. J. Syst. Evol. Micr. 55: 1089-1096, 2005. Go to original source...
  3. Boldareva E.N., Akimov V.N., Boychenko V.A. et al.: Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). - Microbiology 77: 206-218, 2008. Go to original source...
  4. Brinkhoff T., Giebel H.A., Simon M.: Diversity, ecology, and genomics of the Roseobacter clade: a short overview. - Arch. Microbiol. 189: 531-539, 2008. Go to original source...
  5. Chrétien D., Bénit P., Ha H.-H. et al.: Mitochondria are physiologically maintained at close to 50°C. - PLoS Biol. 16: doi: 10.1371/journal.pbio.2003992, 2018. Go to original source...
  6. Ferrera I., Borrego C.M., Salazar G., Gasol J.M.: Marked sea-sonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. - Environ. Microbiol. 16: 2953-2965, 2014. Go to original source...
  7. Gray M.W.: Mitochondrial evolution. - CSH Perspect. Biol. 4: doi: 10.1101/cshperspect.a011403, 2012. Go to original source...
  8. Kalashnikov A.M., Gaisin V.A., Sukhacheva M.V. et al.: Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk thermal spring (Baikal Area, Russia). - Microbiology 83: 407-421, 2014. Go to original source...
  9. Kimura Y., Yu L.J., Hirano Y. et al.: Calcium ions are required for the enhanced thermal stability of the light-harvesting-reaction center core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. - J. Biol. Chem. 284: 93-99, 2009. Go to original source...
  10. Koblížek M.: Ecology of aerobic anoxygenic phototrophs in aquatic environments. - FEMS Microbiol. Rev. 39: 854-870, 2015. Go to original source...
  11. Koblížek M., Béjà O., Bidigare R.R. et al.: Isolation and characterization of Erythrobacter sp. strains from the upper ocean. - Arch. Microbiol. 180: 327-338, 2003. Go to original source...
  12. Koblížek M., Mlčoušková J., Kolber Z., Kopecký J.: On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. - Arch. Microbiol. 192: 41-49, 2010. Go to original source...
  13. Koblížek M., Zeng Y., Horák A., Oborník M.: Regressive evolution of photosynthesis in the Roseobacter clade. - Adv. Bot. Res. 66: 385-405, 2013. Go to original source...
  14. Labrenz M., Collins M.D., Lawson P.A. et al.: Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. - Int. J. Syst. Bacteriol. 49: 137-147, 1999. Go to original source...
  15. Labrenz M., Lawson P.A., Tindal B.J. et al.: Roseisalinus antarc-ticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing alpha-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. - Int. J. Syst. Evol. Micr. 55: 41-47, 2005. Go to original source...
  16. Labrenz M., Tindall B.J., Lawson P.A. et al.: Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., alpha-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. - Int. J. Syst. Evol. Micr. 50: 303-313, 2000. Go to original source...
  17. Madigan M.T., Jung D.O. An overview of purple bacteria: systematics, physiology, and habitats. - In: Hunter C.N., Daldal F., Thurnauer M.C., Beatty J.T. (ed.): The Purple Phototrophic Bacteria. Pp. 1-15. Springer Science, New York 2009. Go to original source...
  18. Mašín M., Zdun A., Stoń-Egiert J. et al.: Seasonal changes and diversity of aerobic anoxygenic phototrophs in the Baltic Sea. - Aquat. Microb. Ecol. 45: 247-254, 2006. Go to original source...
  19. Nozawa T., Madigan M.T.: Temperature and solvent effects on reaction centers from Chloroflexus aurantiacus and Chro-matium tepidum. - J. Biochem.-Tokyo 110: 588-594, 1991. Go to original source...
  20. Piwosz K., Kaftan D., Dean J. et al.: Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae. - Environ. Microbiol. 20: 724-733, 2018. Go to original source...
  21. Selyanin V., Hauruseu D., Koblížek M.: The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. - Photosynth. Res. 128: 35-43, 2016. Go to original source...