Skip to main content

Optical Amplification

  • Living reference work entry
  • First Online:
Handbook of Radio and Optical Networks Convergence

Abstract

Optical amplifiers based on the stimulated emission of radiation paved the way for the global expansion of the high-speed internet, revolutionizing the world of telecommunications. They have further enabled highly efficient, high-power laser tools contributing to many areas of industry, medicine, and other domains. This chapter starts with a description of the erbium-doped fiber amplifier (EDFA) for optical fiber communications in the 1550 nm wavelength region. The structure, components, theory, and optimization issues of EDFAs are discussed and used as an example to describe the basics of numerical modeling of optical amplifiers. We then give a brief description of other rare-earth-doped amplifiers, including praseodymium-doped amplifiers for the 1.3 micrometer band and thulium-doped fiber amplifiers for wavelength ranges below and above the band covered by the EDFAs. Next, technologies of cladding-pumped, high-power fiber amplifiers and lasers, mainly based on ytterbium-doped double-clad fibers, are briefly reviewed before an overview of principles of operation of Raman fiber amplifiers, semiconductor optical amplifiers (SOA), parametric fiber amplifiers, and bismuth-doped fiber amplifiers. Finally, selected applications of optical amplifiers are discussed, namely the maximization of the transmission distance without in-line optical amplifiers, EDFAs for spatial mode division multiplexing in multicore optical fibers, and bidirectional EDFA for precise time and frequency transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    For the low-loss regions of standard single mode fibers and telecommunications band assignment check Fig. 1

References

  1. C.J. Koester, E. Snitzer, Amplification in a fiber laser. Appl. Opt. 3, 1182–1186 (1964). https://doi.org/10.1364/ao.3.001182

    Article  Google Scholar 

  2. J. Hecht, City of Light: The Story of Fiber Optics (Oxford University Press, New York, 1999)

    Google Scholar 

  3. S.B.P. Poole, D.N. Payne, M.E. Fermann, Fabrication of low-loss optical fibres containing rare-earth ions. Electron. Lett. 21, 737–738 (1985). https://doi.org/10.1049/el:19850520

    Article  Google Scholar 

  4. R.J. Mears, L. Reekie, I.M. Jauncey, D.N. Payne, Low-noise erbium-doped fibre amplifier operating at 1.54μm. Electron. Lett. 23, 1026–1028 (1987). https://doi.org/10.1049/el:19870719

    Article  Google Scholar 

  5. E. Desurvire, J.R. Simpson, P.C. Becker, High-gain erbium-doped traveling-wave fiber amplifier. Opt. Lett. 12, 888–890 (1987). https://doi.org/10.1364/ol.12.000888

    Article  Google Scholar 

  6. M. Nakazawa, Y. Kimura, K. Suzuki, Efficient Er-doped optical fiber amplifier pumped by a 1.48 μm InGaAsP laser diode. Appl. Phys. Lett. 54, 295–297 (1989). https://doi.org/10.1063/1.101448

    Article  Google Scholar 

  7. B.J. Puttnam, G. Rademacher, R.S. Luís, et al., High data-rate and long distance MCF transmission with 19-core C+L band cladding-pumped EDFA. J. Lightwave Technol. 38, 123–130 (2020). https://doi.org/10.1109/JLT.2019.2946879

    Article  Google Scholar 

  8. P.J. Winzer, D.T. Neilson, A.R. Chraplyvy, Fiber-optic transmission and networking: The previous 20 and the next 20 years [invited]. Opt. Express 26, 24190–24239 (2018). https://doi.org/10.1364/oe.26.024190

    Article  Google Scholar 

  9. D.J. Richardson, J.M. Fini, L.E. Nelson, Space-division multiplexing in optical fibres. Nat. Photon. 7, 354–362 (2013). https://doi.org/10.1038/nphoton.2013.94

    Article  Google Scholar 

  10. B.J. Puttnam, G. Rademacher, R.S. Luís, Space-division multiplexing for optical fiber communications. Optica 8, 1186–1203 (2021). https://doi.org/10.1364/OPTICA.427631

    Article  Google Scholar 

  11. A. Ferrari, A. Napoli, J.K. Fischer, et al., Assessment on the achievable throughput of multi-band ITU-T G.652.D fiber transmission systems. J. Lightwave Technol. 38, 4279–4291 (2020). https://doi.org/10.1109/JLT.2020.2989620

    Article  Google Scholar 

  12. B.J. Puttnam, R.S. Luís, G. Rademacher, et al., S-, C- and L-band transmission over a 157 nm bandwidth using doped fiber and distributed Raman amplification. Opt. Express 30, 10011–10018 (2022). https://doi.org/10.1364/OE.448837

    Article  Google Scholar 

  13. F. Poletti, Nested antiresonant nodeless hollow core fiber. Opt. Express 22, 23807–23828 (2014). https://doi.org/10.1364/oe.22.023807

    Article  Google Scholar 

  14. H. Sakr, T.D. Bradley, G.T. Jasion, et al, Hollow Core NANFs with Five Nested Tubes and Record Low Loss at 850, 1060, 1300 and 1625nm, in Optical Fiber Communication Conference (OFC) 2021 (2021), Paper F3A.4 (Optical Society of America, 2021), p. F3A.4

    Google Scholar 

  15. V.P. Gapontsev, 25 years of the high power fiber laser [Keynote Lecture], OSA Laser Congress: Advanced Solid State Lasers (ASSL) and Laser Applications Conference, Boston (2016)

    Google Scholar 

  16. D. Derickson, Fiber Optic Test and Measurements (Prentice-Hall, 1998)

    Google Scholar 

  17. P. Peterka, I. Kasik, V. Matejec, et al., Amplifier performance of double-clad Er/Yb-doped fiber with cross-section tailored for direct splicing to the pump and signal fibers (OSA, 2007), p. JWA12

    Google Scholar 

  18. D.M. Baney, P. Gallion, R.S. Tucker, Theory and measurement techniques for the noise figure of optical amplifiers. Opt. Fiber Technol. 6, 122–154 (2000). https://doi.org/10.1006/ofte.2000.0327

    Article  Google Scholar 

  19. C.R. Giles, Lightwave applications of fiber Bragg gratings. J. Lightwave Technol. 15, 1391–1404 (1997). https://doi.org/10.1109/50.618357

    Article  Google Scholar 

  20. M. Becker, J. Bergmann, S. Brückner, et al., Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry. Opt. Express 16, 19169–19178 (2008). https://doi.org/10.1364/oe.16.019169

    Article  Google Scholar 

  21. A. Theodosiou, J. Aubrecht, P. Peterka, et al., Er/Yb double-clad fiber laser with fs-laser inscribed plane-by-plane chirped FBG laser mirrors. IEEE Photon. Technol. Lett. 31, 409–412 (2019). https://doi.org/10.1109/lpt.2019.2896896

    Article  Google Scholar 

  22. M. Pisarik, P. Peterka, S. Zvanovec, et al., Fused fiber components for “eye-safe” spectral region around 2 μm. Opt. Quant. Electron. 46, 603–611 (2014). https://doi.org/10.1007/s11082-013-9801-2

    Article  Google Scholar 

  23. Z. Wan, Optical circulator analysis and optimization: A mini-project for physical optics, in 14th Conference on Education and Training in Optics and Photonics: ETOP 2017, ed. by X. Liu, X.-C. Zhang, (SPIE, Hangzhou, 2017), p. 148

    Chapter  Google Scholar 

  24. A. Einstein, Zur Quantentheorie der Strahlung. Physikalische Zeitschrift 18, 121–128 (1917)

    Google Scholar 

  25. M.J.F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (M. Dekker, New York, 1993)

    Google Scholar 

  26. P.S. Peijzel, A. Meijerink, R.T. Wegh, et al., A complete 4fn energy level diagram for all trivalent lanthanide ions. J. Solid State Chem. 178, 448–453 (2005). https://doi.org/10.1016/j.jssc.2004.07.046

    Article  Google Scholar 

  27. M. Kamrádek, J. Aubrecht, P. Vařák, et al., Energy transfer coefficients in thulium-doped silica fibers. Opt. Mater. Express 11, 1805–1814 (2021). https://doi.org/10.1364/ome.427456

    Article  Google Scholar 

  28. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994)

    Google Scholar 

  29. T. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  30. P. Koska, P. Peterka, J. Aubrecht, et al., Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers. Opt. Express 24, 102–107 (2016). https://doi.org/10.1364/oe.24.000102

    Article  Google Scholar 

  31. P.C. Becker, N.A. Olsson, J.R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, 1997)

    Google Scholar 

  32. E. Delevaque, T. Georges, M. Monerie, et al., Modeling of pair-induced quenching in erbium-doped silicate fibers. IEEE Photon. Technol. Lett. 5, 73–75 (1993). https://doi.org/10.1109/68.185065

    Article  Google Scholar 

  33. M.J. Barber, P.C. Shardlow, P. Barua, et al., Nested-ring doping for highly efficient 1907 nm short-wavelength cladding-pumped thulium fiber lasers. Opt. Lett. 45, 5542–5545 (2020). https://doi.org/10.1364/OL.401228

    Article  Google Scholar 

  34. H. Kogelnik, A. Yariv, Considerations of noise and schemes for its reduction in laser amplifiers. Proc. IEEE 52, 165–172 (1964). https://doi.org/10.1109/PROC.1964.2805

    Article  Google Scholar 

  35. M. Karasek, Optimum design of Er/Yb codoped fibers for large-signal high-pump-power applications. IEEE J. Quantum Electron. 33, 1699–1705 (1997). https://doi.org/10.1109/3.631268

    Article  Google Scholar 

  36. S. Sujecki, L. Sojka, A.B. Seddon, et al., Comparative modeling of infrared Fiber lasers. Photo-Dermatology 5, 48 (2018). https://doi.org/10.3390/photonics5040048

    Article  Google Scholar 

  37. P. Peterka, J. Kanka, Erbium-doped twin-core fibre narrow-band filter for fibre lasers. Opt. Quant. Electron. 33, 571–581 (2001). https://doi.org/10.1023/A:1010875724394

    Article  Google Scholar 

  38. D. Marcuse, Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 703–718 (1977). https://doi.org/10.1002/j.1538-7305.1977.tb00534.x

    Article  Google Scholar 

  39. T.J. Whitley, R. Wyatt, Alternative Gaussian spot size polynomial for use with doped fiber amplifiers. IEEE Photon. Technol. Lett. 5, 1325–1327 (1993). https://doi.org/10.1109/68.250058

    Article  Google Scholar 

  40. C.R. Giles, C.A. Burrus, D.J. DiGiovanni, et al., Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers. IEEE Photon. Technol. Lett. 3, 363–365 (1991). https://doi.org/10.1109/68.82113

    Article  Google Scholar 

  41. M. Yamada, M. Shimizu, T. Kanamori, et al., Low-noise and high-power Pr3+ −doped fluoride fiber amplifier. IEEE Photon. Technol. Lett. 7, 869–871 (1995). https://doi.org/10.1109/68.403998

    Article  Google Scholar 

  42. S.V. Firstov, A.M. Khegai, A.V. Kharakhordin, et al., Compact and efficient O-band bismuth-doped phosphosilicate fiber amplifier for fiber-optic communications. Sci. Rep. 10, 11347 (2020). https://doi.org/10.1038/s41598-020-68243-4

    Article  Google Scholar 

  43. R Caspary, MM Kozak, W Kowalsky, Avalanche pumping of thulium doped S-band fiber amplifiers, in 2006 International Conference on Transparent Optical Networks (2006), pp 166–169

    Google Scholar 

  44. K. Thyagarajan, C. Kakkar, S-band single-stage EDFA with 25-dB gain using distributed ASE suppression. IEEE Photon. Technol. Lett. 16, 2448–2450 (2004). https://doi.org/10.1109/LPT.2004.835196

    Article  Google Scholar 

  45. Y. Jung, Z. Li, N. Simakov, et al., Silica-Based Thulium Doped Fiber Amplifiers for Wavelengths Beyond the L-Band (Optical Society of America, 2016), p. M3D.5

    Google Scholar 

  46. B. Cole, M.L. Dennis, S-Band Amplification in a Thulium Doped Silicate Fiber, in Optical Fiber Communication Conference and International Conference on Quantum Information (2001), paper TuQ3 (Optical Society of America, 2001), p. TuQ3

    Google Scholar 

  47. F. Todorov, J. Aubrecht, P. Peterka, et al., Active optical fibers and components for fiber lasers emitting in the 2-μm spectral range. Materials 13, 5177 (2020). https://doi.org/10.3390/ma13225177

    Article  Google Scholar 

  48. P. Peterka, I. Kasik, V. Matejec, et al., Thulium-doped silica-based optical fibers for cladding-pumped fiber amplifiers. Opt. Mater. 30, 174–176 (2007). https://doi.org/10.1016/j.optmat.2006.11.039

    Article  Google Scholar 

  49. O. Podrazky, I. Kasik, M. Pospisilova, V. Matejec, Use of alumina nanoparticles for preparation of erbium-doped fibers. IEEE LEOS 2007, 246–247 (2007)

    Google Scholar 

  50. P. Peterka, B. Faure, W. Blanc, et al, Theoretical modelling of S-band thulium-doped fibre amplifiers (2003), p. 130

    Google Scholar 

  51. P. Peterka, I. Kasik, A. Dhar, et al., Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime. Opt. Express 19, 2773–2781 (2011). https://doi.org/10.1364/oe.19.002773

    Article  Google Scholar 

  52. E. Kajikawa, T. Ishii, T. Kubo, et al., Dual-wavelength-pumped Tm3+-doped ZBLAN fiber MOPA at 813  nm. Opt. Lett. 44, 2875–2878 (2019). https://doi.org/10.1364/OL.44.002875

    Article  Google Scholar 

  53. P. Koska, P. Peterka, V. Doya, Numerical modeling of pump absorption in coiled and twisted double-clad fibers. IEEE J. Sel. Topics Quantum Electron. 22, 4401508 (2016). https://doi.org/10.1109/Jstqe.2015.2490100

    Article  Google Scholar 

  54. E. Snitzer, H. Po, F. Hakimi, et al, Double-clad, offset core Nd fiber laser. pp 533–535, paper PD5 (1988)

    Google Scholar 

  55. D.J. DiGiovanni, A.J. Stentz, Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices (1999)

    Google Scholar 

  56. P. Koska, Y. Baravets, P. Peterka, et al., Mode-field adapter for tapered-fiber-bundle signal and pump combiners. Appl. Opt. 54, 751–756 (2015). https://doi.org/10.1364/ao.54.000751

    Article  Google Scholar 

  57. P. Peterka, I. Kasik, V. Matejec, et al., Experimental demonstration of novel end-pumping method for double-clad fiber devices. Opt. Lett. 31, 3240–3242 (2006). https://doi.org/10.1364/ol.31.003240

    Article  Google Scholar 

  58. V.P. Gapontsev, L.E. Samartsev, High-power fiber laser. in ed. by G. Dube (OSA, 1990), pp 258–262

    Google Scholar 

  59. V.P. Gapontsev, I. Samartsev, Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length (1999)

    Google Scholar 

  60. T. Theeg, H. Sayinc, J. Neumann, et al., Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers. Opt. Express 20, 28125–28141 (2012). https://doi.org/10.1364/OE.20.028125

    Article  Google Scholar 

  61. L. Goldberg, J.P. Koplow, D.A.V. Kliner, Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode. Opt. Lett. 24, 673–675 (1999). https://doi.org/10.1364/OL.24.000673

    Article  Google Scholar 

  62. A.B. Grudinin, J. Nilsson, P.W. Turner, et al., Single Clad Coiled Optical Fibre for High Power Lasers and Amplifiers (Optical Society of America, 1999), p. CPD26

    Google Scholar 

  63. P. Koska, P. Peterka, Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber. Opt. Quant. Electron. 47, 3181–3191 (2015). https://doi.org/10.1007/s11082-015-0194-2

    Article  Google Scholar 

  64. L. Dong, B. Samson, Fiber Lasers: Basics, Technology, and Applications (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  65. M.N. Zervas, C.A. Codemard, High power fiber lasers: A review. IEEE J. Sel. Topics Quantum Electron. 20, 0904123 (2014). https://doi.org/10.1109/Jstqe.2014.2321279

    Article  Google Scholar 

  66. V. Fomin, M. Abramov, A.A. Ferin, et al., 10 kW single mode fiber laser. St. Petersburg (2010)

    Google Scholar 

  67. P. Navratil, P. Peterka, P. Honzatko, V. Kubecek, Reverse spontaneous laser line sweeping in ytterbium fiber laser. Laser Phys. Lett. 14, 035102 (2017). https://doi.org/10.1088/1612-202x/Aa548d

    Article  Google Scholar 

  68. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, Amsterdam, 2007)

    MATH  Google Scholar 

  69. M. Karasek, J. Kanka, P. Honzatko, P. Peterka, Modelling of a pump-power-controlled gain-locking system for multi-pump wideband Raman fibre amplifiers. IEEE Proc. Optoelectron. 151, 74–80 (2004). https://doi.org/10.1049/ip-opt:20040391

    Article  MATH  Google Scholar 

  70. J.-C. Bouteiller, Raman fiber lasers for optical communication application. Ann. Télécommun. 58, 1342–1363 (2003). https://doi.org/10.1007/BF03001734

    Article  Google Scholar 

  71. V.R. Supradeepa, Y. Feng, J.W. Nicholson, Raman fiber lasers. J. Opt. 19, 023001 (2017). https://doi.org/10.1088/2040-8986/19/2/023001

    Article  Google Scholar 

  72. S.A. Babin, I.D. Vatnik, A.Y. Laptev, et al., High-efficiency cascaded Raman fiber laser with random distributed feedback. Opt. Express 22, 24929–24934 (2014). https://doi.org/10.1364/OE.22.024929

    Article  Google Scholar 

  73. S. Droste, T. Udem, T.W. Hansch, et al, Optical frequency transfer over a single-span 1840-km fiber link (2013), pp 1004–1006

    Google Scholar 

  74. S. Sugavanam, S. Fabbri, S.T. Le, et al., Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers. Sci. Rep. 6, 23152 (2016)

    Article  Google Scholar 

  75. M. Karásek, P. Honzátko, J. Vojtěch, J. Radil, Multi-Wavelength Conversion at 10 Gb/s and 40 Gb/s Based on 2 Pumps FOPA, in 2011 13th International Conference on Transparent Optical Networks (2011), pp 1–4

    Google Scholar 

  76. A. Donodin, V. Dvoyrin, E. Manuylovich, et al., Bismuth doped fibre amplifier operating in E- and S- optical bands. Opt. Mater. Express 11, 127–135 (2021). https://doi.org/10.1364/OME.411466

    Article  Google Scholar 

  77. E.M. Dianov, S.L. Semjonov, I.A. Bufetov, New generation of optical fibres. Quantum Electron. 46, 1 (2016). https://doi.org/10.1070/QE2016v046n01ABEH015963

    Article  Google Scholar 

  78. N.K. Dutta, Q. Wang, Semiconductor Optical Amplifiers, 2nd edn. (World Scientific Publishing, Hackensack, 2006)

    Book  Google Scholar 

  79. R. Koda, H. Watanabe, S. Kono, Gallium Nitride-Based Semiconductor Optical Amplifiers (IntechOpen, 2015)

    Book  Google Scholar 

  80. J. Vojtech, O. Havlis, M. Slapak, et al, Active Bidirectional Precise Time Transmission Outside the Telecommunication Bands Over 200 km of Single Mode Fiber (2021), pp. 406–410

    Google Scholar 

  81. J.L. Pleumeekers, M. Kauer, K. Dreyer, et al., Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photon. Technol. Lett. 14, 12–14 (2002). https://doi.org/10.1109/68.974145

    Article  Google Scholar 

  82. J. Renaudier, A. Arnould, A. Ghazisaeidi, et al., Recent advances in 100+nm ultra-wideband Fiber-optic transmission systems using semiconductor optical amplifiers. J. Lightwave Technol. 38, 1071–1079 (2020). https://doi.org/10.1109/JLT.2020.2966491

    Article  Google Scholar 

  83. M. Karasek, P. Peterka, J. Radil, 202 km repeaterless transmission of 2x10 GE plus 2x1 GE channels over standard single mode fibre. Opt. Commun. 235, 269–274 (2004). https://doi.org/10.1016/j.optcom.2004.02.077

    Article  Google Scholar 

  84. M. Karásek, J. Vojtěch, J. Radil, TDM-pumped RFA assisted transmission of 20×10 GE channels over 364 km in a three span link. J. Opt. Commun. 31, 194–197 (2010)

    Article  Google Scholar 

  85. J.D. Downie, J. Hurley, I. Roudas, et al., Unrepeatered 256 Gb/s PM-16QAM transmission over up to 304 km with simple system configurations. Opt. Express 22, 10256–10261 (2014). https://doi.org/10.1364/OE.22.010256

    Article  Google Scholar 

  86. M. Ionescu, A. Arnould, H. Bissessur, J. Renaudier, High-Speed Long-Distance Unrepeatered Transmission, in OSA Advanced Photonics Congress 2021 (2021), paper NeTu3B.1 (Optica Publishing Group, 2021), p. NeTu3B.1

    Google Scholar 

  87. M. Karasek, M. Menif, L.A. Rusch, Output power excursions in a cascade of EDFAs fed by multichannel burst-mode packet traffic: Experimentation and modeling. J. Lightwave Technol. 19, 933–940 (2001). https://doi.org/10.1109/50.933287

    Article  Google Scholar 

  88. P. Peterka, P. Koška, J. Čtyroký, Reflectivity of superimposed Bragg gratings induced by longitudinal mode instabilities in fiber lasers. IEEE J. Sel. Topics Quantum Electron. 24, 0902608 (2018). https://doi.org/10.1109/jstqe.2018.2806084

    Article  Google Scholar 

  89. K.S. Abedin, T.F. Taunay, M. Fishteyn, et al., Cladding-pumped erbium-doped multicore fiber amplifier. Opt. Express 20, 20191–20200 (2012). https://doi.org/10.1364/OE.20.020191

    Article  Google Scholar 

  90. J. Sakaguchi, W. Klaus, B.J. Puttnam, et al., 19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics. Opt. Express 22, 90–95 (2014). https://doi.org/10.1364/OE.22.000090

    Article  Google Scholar 

  91. S.-C. Ebenhag, P.O. Hedekvist, K. Jaldehag, Single-way fiber-based time transfer with active detection of time transfer variations, pp. 413–425 (2010)

    Google Scholar 

  92. Ł. Śliwczynski, P. Krehlik, Ł. Buczek, M. Lipinski, Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers. IEEE Trans. Instrum. Meas. 61, 2573–2580 (2012). https://doi.org/10.1109/TIM.2012.2188663

    Article  Google Scholar 

  93. M.O. van Deventer, Fundamentals of Bidirectional Transmission Over a Single Optical Fibre (Springer, 1996)

    Book  Google Scholar 

  94. O. Havlis, J. Vojtech, R. Velc, et al., Bidirectional optical amplifier delivering high gain, pp 303–307 (2018)

    Google Scholar 

  95. F. Guillou-Camargo, V. Ménoret, E. Cantin, et al., First industrial-grade coherent fiber link for optical frequency standard dissemination. Appl. Opt. 57, 7203–7210 (2018). https://doi.org/10.1364/AO.57.007203

    Article  Google Scholar 

  96. M. Slapak, Bidirectional amplifier’s cascade balancing to advance high-accuracy time distribution networks. submitted to IEEE Network Magazine (2021)

    Google Scholar 

  97. J. Vojtech, M. Slapak, P. Skoda, et al., Joint accurate time and stable frequency distribution infrastructure sharing fiber footprint with research network. Opt. Eng. 56, 027101 (2017). https://doi.org/10.1117/1.OE.56.2.027101

    Article  Google Scholar 

  98. J. Vojtech, O. Havlis, S. Bhowmick, et al., White Rabbit Single Fibre Bidirectional Transmission Of Precise Time Using Unconventional Wavelengths, in2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF) (2020), pp 1–4

    Google Scholar 

  99. D. Husmann, L.-G. Bernier, M. Bertrand, et al., SI-traceable frequency dissemination at 1572.06 nm in a stabilized fiber network with ring topology. Opt. Express 29, 24592–24605 (2021). https://doi.org/10.1364/OE.427921

    Article  Google Scholar 

  100. C. Clivati, G. Bolognini, D. Calonico, et al., In-field Raman amplification on coherent optical fiber links for frequency metrology. Opt. Express 23, 10604–10615 (2015). https://doi.org/10.1364/OE.23.010604

    Article  Google Scholar 

  101. S.M.F. Raupach, A. Koczwara, G. Grosche, Optical frequency transfer via a 660 km underground fiber link using a remote Brillouin amplifier. Opt. Express 22, 26537–26547 (2014). https://doi.org/10.1364/OE.22.026537

    Article  Google Scholar 

  102. J. Vojtech, J. Radil, V. Smotlacha, Semiconductor Optical Amplifier with Holding Beam Injection for Single Path Accurate Time Transmission, in CLEO: 2015 (2015), paper JTh2A.78 (Optical Society of America, 2015), p. JTh2A.78

    Google Scholar 

Download references

Acknowledgments

The chapter is dedicated to Miroslav “Mirek” Karásek in memory of his inspiring passion in research of optical amplifiers in telecommunications. He also initiated the semestral course “Fiber lasers and amplifiers” at the Czech Technical University in Prague, which in its current form influenced this short overview of optical amplifiers. The authors acknowledge Jiří Čtyroký and Radan Slavík for valuable comments to the text and colleagues from the team of Fiber lasers and nonlinear optics of the Institute of Photonics and Electronics of the Czech Academy of Sciences as well as colleagues from the Optical Networks Department of the CESNET for help in preparation of the figures. Pavel Peterka acknowledges support from the Czech Science Foundation, project No. 23-05701S. Josef Vojtech acknowledges support by the Ministry of Education, Youth and Sport of the Czech Republic as part of the e-INFRA CZ project LM2018140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Peterka .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Peterka, P., Vojtěch, J. (2023). Optical Amplification. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4999-5_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4999-5

  • Online ISBN: 978-981-33-4999-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics