Skip to main content

Laser-Induced Thermal Processes: Heat Transfer, Generation of Stresses, Melting and Solidification, Vaporization, and Phase Explosion

  • Living reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

The vast field of laser-enabled material synthesis, manufacturing, and processing to a large degree relies on the ability to induce and control a range of thermal processes triggered by the laser energy deposition as well as subsequent transport processes involving electrons and phonons. This chapter provides a review of the fundamental mechanisms, thermodynamic driving forces, and kinetics of thermal processes involved in laser-material interactions, with a particular focus on the far-from-equilibrium conditions characteristic of laser processing with short and ultrashort pulses. The peculiarities of the energy redistribution under conditions of electron-phonon nonequilibrium produced by an ultrashort laser excitation are discussed first and followed by analysis of the effect of dimensionality of the heat transfer at different stages of laser-materials interactions. The generation of strong thermoelastic stresses, which may lead to photomechanical spallation, generation of crystal defects, and activation of surface processes are then outlined, along with the implications of laser-induced stresses for practical applications. The discussion of laser-induced phase transformations starts from a brief review of experimental and computational results revealing the conditions leading to transition between the heterogeneous to homogeneous melting mechanisms. The implications of rapid melting and resolidification on microstructure and surface morphology of laser-processed surfaces are considered, and the conditions leading to chemical homogenization, amorphization, and generation of extreme densities of crystal defects are elaborated. The vaporization, which may take the form of evaporation from the surface or an explosive decomposition of superheated liquid (phase explosion), is discussed as the main process responsible for the material removal from the target, that is, for laser ablation. The mechanisms responsible for the generation of nanoparticles in the course of the phase explosion and through the condensation in the ablation plume are also considered and related to the particle size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abou-Saleh A, Karim ET, Maurice C, Reynaud S, Pigeon F, Garrelie F, Zhigilei LV, Colombier JP (2018) Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr. Appl Phys A Mater Sci Process 124:308

    ADS  Google Scholar 

  • Agranat MB, Ashitkov SI, Fortov VE, Kirillin AV, Kostanovskii AV, Anisimov SI, Kondratenko PS (1999) Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces. Appl Phys A Mater Sci Process 69:637

    ADS  Google Scholar 

  • Almeida R, Hood ES (1992) Nonequilibrium dynamics in thermal desorption. J Phys Chem 96:3086

    Google Scholar 

  • Alonso JC, Diamant R, Castillo P, Acosta-García MC, Batina N, Haro-Poniatowski E (2009) Thin films of silver nanoparticles deposited in vacuum by pulsed laser ablation using a YAG:Nd laser. Appl Surf Sci 255:4933

    ADS  Google Scholar 

  • Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27:182

    ADS  Google Scholar 

  • Anisimov SI, Kapeliovich BL, Perel’man TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP 39:375

    ADS  Google Scholar 

  • Arblaster JW (2016) Thermodynamic properties of gold. J Phase Equilib Diff 37:229

    Google Scholar 

  • Ashitkov SI et al (2002) Ultrafast laser-induced phase transitions in tellurium. J Exp Theor Phys Lett 76:461

    Google Scholar 

  • Ashitkov SI, Inogamov NA, Zhakhovskii VV, Emirov YN, Agranat MB, Oleinik II, Anisimov SI, Fortov VE (2012) Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse. JETP Lett 95:176

    ADS  Google Scholar 

  • Ashkenazy Y, Averback RS (2010) Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals. Acta Mater 58:524

    ADS  Google Scholar 

  • Baffou G, Rigneault H (2011) Femtosecond-pulsed optical heating of gold nanoparticles. Phys Rev B 84:035415

    ADS  Google Scholar 

  • Balling P (2020) Laser coupling and relaxation of the absorbed energy: metals, semiconductors and dielectrics. In: Handbook of laser micro- and nano-engineering. Springer, Cham

    Google Scholar 

  • Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007) Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A Mater Sci Process 87:47

    ADS  Google Scholar 

  • Barin I, Platzki G (1995) Thermochemical data of pure substances. VCH/Weinheim, New York

    Google Scholar 

  • Baskes MI, Stan M (2003) An atomistic study of solid/liquid interfaces and phase equilibrium in binary systems. Metall Mater Trans A 34:435

    Google Scholar 

  • Bäuerle D (2000) Laser processing and chemistry. Springer, Berlin/Heidelberg

    Google Scholar 

  • Bernholc J, Phillips JC (1986) Kinetics of cluster formation in the laser vaporization source: Carbon clusters. J Chem Phys 85:3258

    ADS  Google Scholar 

  • Billings BH, Gray DE (1972) American institute of physics handbook, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Biswas K, Chattopadhyay K (2007) Microstructural evolution during laser resolidification of Fe-25 atom percent Ge alloy. Metall Mater Trans A 38:1395

    Google Scholar 

  • Bonse J, Rosenfeld A, Krüger J (2009) On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys 106:104910

    ADS  Google Scholar 

  • Bonse J, Höhm S, Kirner SV, Rosenfeld A, Krüger J (2017) Laser-induced periodic surface structures – a scientific evergreen. IEEE J Sel Top Quantum Electron 23:1

    Google Scholar 

  • Broughton JQ, Gilmer GH, Jackson KA (1982) Crystallization rates of a Lennard-Jones liquid. Phys Rev Lett 49:1496

    ADS  Google Scholar 

  • Buividas R, Mikutis M, Juodkazis S (2014) Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog Quantum Electron 38:119

    ADS  Google Scholar 

  • Bulgakov AV, Bulgakova NM (1998) Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet. J Phys D 31:693

    ADS  Google Scholar 

  • Bulgakov AV, Bulgakova NM (1999) Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma. Quantum Electron 29:433

    ADS  Google Scholar 

  • Bulgakov AV, Bobrenok OF, Kosyakov VI (2000) Laser ablation synthesis of phosphorus clusters. Chem Phys Lett 320:19

    ADS  Google Scholar 

  • Bulgakov AV, Evtushenko AB, Shukhov YG, Ozerov I, Marin W (2010) Pulsed laser ablation of binary semiconductors: mechanisms of vaporisation and cluster formation. Quantum Electron 40:1021

    ADS  Google Scholar 

  • Bulgakova NM, Bulgakov AV (2001) Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl Phys A Mater Sci Process 73:199

    ADS  Google Scholar 

  • Bulgakova NM, Bulgakov AV (2007) Numerical study of gas-phase cluster synthesis under ns laser ablation. Proc SPIE 6732:67320G

    ADS  Google Scholar 

  • Bulgakova NM, Bulgakov AV, Babich LP (2004) Energy balance of pulsed laser ablation: thermal model revised. Appl Phys A Mater Sci Process 79:1323

    ADS  Google Scholar 

  • Bulgakova NM, Stoian R, Rosenfeld A, Hertel IV, Marine W, Campbell EEB (2005) A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion. Appl Phys A Mater Sci Process 81:345

    ADS  Google Scholar 

  • Bulgakova NM, Evtushenko AB, Shukhov YG, Kudryashov SI, Bulgakov AV (2011) Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses. Appl Surf Sci 257:10876

    ADS  Google Scholar 

  • Burke E, Broughton JQ, Gilmer GH (1988) Crystallization of fcc (111) and (100) crystal-melt interfaces: a comparison by molecular dynamics for the Lennard-Jones system. J Chem Phys 89:1030

    ADS  Google Scholar 

  • Buvailo A, Xing Y, Hines J, Borguet E (2011) Thin polymer film based rapid surface acoustic wave humidity sensors. Sensors Actuators B Chem 156:444

    Google Scholar 

  • Byskov-Nielsen J, Savolainen J-M, Christensen MS, Balling P (2011) Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations. Appl Phys A Mater Sci Process 103:447

    ADS  Google Scholar 

  • Cahn RW (1989) New ideas for the melting pot. Nature 342:619

    ADS  Google Scholar 

  • Cahn RW (2001) Melting from within. Nature 413:582

    ADS  Google Scholar 

  • Cangueiro LT, Cavaleiro AJ, Morgiel J, Vilar R (2016) Mechanisms of the formation of low spatial frequency LIPSS on Ni/Ti reactive multilayers. J Phys D 49:365103

    Google Scholar 

  • Černý R, Šáršik R, Lukeš I, Cháb V (1991) Excimer-laser-induced melting and solidification of monocrystalline Si: equilibrium and nonequilibrium models. Phys Rev B 44:4097

    ADS  Google Scholar 

  • Chan W-L, Averback RS, Cahill DG, Lagoutchev A (2008) Dynamics of femtosecond laser-induced melting of silver. Phys Rev B 78:214107

    ADS  Google Scholar 

  • Chan W-L, Averback RS, Cahill DG, Ashkenazy Y (2009) Solidification velocities in deeply undercooled silver. Phys Rev Lett 102:095701

    ADS  Google Scholar 

  • Chase MW, Davies CA, Downey JR, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, 3rd edn. J Phys Chem Ref Data 14(Suppl 1)

    Google Scholar 

  • Cheaito R et al (2015) Thermal boundary conductance accumulation and interfacial phonon transmission: measurements and theory. Phys Rev B 91:035432

    ADS  Google Scholar 

  • Chen J, Chen W-K, Tang J, Rentzepis PM (2011) Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses. Proc Natl Acad Sci U S A 108:18887

    ADS  Google Scholar 

  • Choi G-M, Wilson RB, Cahill DG (2014) Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer. Phys Rev B 89:064307

    ADS  Google Scholar 

  • Coriell SR, Turnbull D (1982) Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts. Acta Metall 30:2135

    Google Scholar 

  • Creasy WR (1990) Some model calculations of carbon cluster growth kinetics. J Chem Phys 92:7223

    ADS  Google Scholar 

  • Dash JG (1999) History of the search for continuous melting. Rev Mod Phys 71:1737

    ADS  Google Scholar 

  • Denison DR (1969) Phonic desorption. J Vac Sci Technol 6:214

    ADS  Google Scholar 

  • Dolbec R, Irissou E, Chaker M, Guay D, Rosei F, El Khakani MA (2004) Growth dynamics of pulsed laser deposited Pt nanoparticles on highly oriented pyrolitic graphite substrates. Phys Rev B 70:201406

    ADS  Google Scholar 

  • Dow AR, Wittrig AM, Kenttämaa HI (2012) Laser-induced acoustic desorption mass spectrometry. Eur J Mass Spectrom 18:77

    Google Scholar 

  • Dumitrica T, Burzo A, Dou Y, Allen RE (2004) Response of Si and InSb to ultrafast laser pulses. Phys Status Solidi B 241:2331

    ADS  Google Scholar 

  • Dwyer JR, Hebeisen CT, Ernstorfer R, Harb M, Deyirmenjian VB, Jordan RE, Dwayne Miller RJ (2006) Femtosecond electron diffraction: ‘making the molecular movie’. Philos Trans Royal Soc A 364:741

    ADS  Google Scholar 

  • Dzegilenko FN, Uzer T, Herbst E (1996) Classical studies of shock wave-induced desorption for model adsorbates. J Chem Phys 105:10868

    ADS  Google Scholar 

  • Egry I, Ricci E, Novakovic R, Ozawa S (2010) Surface tension of liquid metals and alloys – recent developments. Adv Colloid Interf Sci 159:198

    Google Scholar 

  • Ehlert S, Walte A, Zimmermann R (2013) Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives. Anal Chem 85:11047

    Google Scholar 

  • Ehrler J et al (2018) Laser-rewriteable ferromagnetism at thin-film surfaces. ACS Appl Mater Interfaces 10:15232

    Google Scholar 

  • Eliezer S et al (2004) Synthesis of nanoparticles with femtosecond laser pulses. Phys Rev B 69:144119

    ADS  Google Scholar 

  • Elliott WA, Gagliano FP, Krauss G (1972) Rapid cooling by laser melt quenching. Appl Phys Lett 21:23

    ADS  Google Scholar 

  • Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331:1587

    ADS  Google Scholar 

  • Feng Q, Picard YN, Liu H, Yalisove SM, Mourou G, Pollock TM (2005) Femtosecond laser micromachining of a single-crystal superalloy. Scr Mater 53:511

    Google Scholar 

  • Fröhlingsdorf J, Stritzker B (1986) Amorphous gallium produced by pulsed excimer laser irradiation. In: Draper CW, Mazzoldi P (eds) Laser surface treatment of metals. Springer Netherlands, Dordrecht, p 133

    Google Scholar 

  • Fucke W, Seydel U (1980) Improved experimental determination of critical-point data for tungsten. High Temp High Pressure 12:419

    Google Scholar 

  • Gäumann M, Trivedi R, Kurz W (1997) Nucleation ahead of the advancing interface in directional solidification. Mater Sci Eng A 226–228:763

    Google Scholar 

  • Gaumet JJ, Wakisaka A, Shimizu Y, Tamori Y (1993) Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength. J Chem Soc Faraday Trans 89:1667

    Google Scholar 

  • Giammanco F, Giorgetti E, Marsili P, Giusti A (2010) Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation. J Phys Chem C 114:3354

    Google Scholar 

  • Gill SC, Kurz W (1995) Rapidly solidified Al-Cu alloys – II. Calculation of the microstructure selection map. Acta Mater 43:139

    Google Scholar 

  • Gill-Comeau M, Lewis LJ (2011) Ultrashort-pulse laser ablation of nanocrystalline aluminum. Phys Rev B 84:224110

    ADS  Google Scholar 

  • Gloor GJ, Jackson G, Blas FJ, de Miguel E (2005) Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J Chem Phys 123:134703

    ADS  Google Scholar 

  • Gökce B, Rehbock C, Ramesh V, Kohsakowski S, Hupfeld T, Reichenberger S, Barcikowski S (2020) Laser synthesis of colloids: applications. In: Handbook of laser micro- and nano-engineering. Springer, Cham

    Google Scholar 

  • Goldenfeld N (1992) Lectures on phase transitions and the renormalization group. Addison-Wesley/Advanced Book Program, Reading

    MATH  Google Scholar 

  • Golovlev VV, Allman SL, Garrett WR, Chen CH (1997a) Laser-induced acoustic desorption of electrons and ions. Appl Phys Lett 71:852

    ADS  Google Scholar 

  • Golovlev VV, Allman SL, Garrett WR, Taranenko NI, Chen CH (1997b) Laser-induced acoustic desorption. Int J Mass Spectrom Ion Process 169–170:69

    ADS  Google Scholar 

  • Grabow MH, Gilmer GH, Bakker AF (1988) Molecular dynamics studies of silicon solidification and melting. MRS Proc 141(349):349

    Google Scholar 

  • Guggenheim EA (1945) The principle of corresponding states. J Chem Phys 13:253

    ADS  Google Scholar 

  • Gurevich EL, Levy Y, Gurevich SV, Bulgakova NM (2017) Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser pulses on gold. Phys Rev B 95:054305

    ADS  Google Scholar 

  • Gusarov AV, Smurov I (2005) Thermal model of nanosecond pulsed laser ablation: analysis of energy and mass transfer. J Appl Phys 97:014307

    ADS  Google Scholar 

  • Hamilton MF, Il’insky YA, Zabolotskaya EA (1995) Local and nonlocal nonlinearity in Rayleigh waves. J Acoust Soc Am 97:882

    ADS  Google Scholar 

  • Hashimoto K-Y (2000) Surface acoustic wave devices in telecommunications: modelling and simulation. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Hashimoto K, Masumoto T (1983) Corrosion properties of amorphous alloys. In: Hasegawa R (ed) Glassy metals: magnetic, chemical, and structural properties. CRC Press University of California, Boca Raton

    Google Scholar 

  • Hashimoto A, Kumazawa M, Onuma N (1979) Evaporation metamorphism of primitive dust material in the early solar nebula. Earth Planet Sci Lett 43:13

    ADS  Google Scholar 

  • Hashimoto S, Werner D, Uwada T (2012) Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J Photochem Photobiol C 13:28

    Google Scholar 

  • He M, Wu C, Shugaev MV, Samolyuk GD, Zhigilei LV (2019) Computational study of short pulse laser induced generation of crystal defects in Ni-based single-phase binary solid solution alloys. J Phys Chem C 123:2202

    Google Scholar 

  • Hoekstra JG, Qadri SB, Scully JR, Fitz-Gerald JM (2005) Laser surface modification of a crystalline Al-Co-Ce alloy for enhanced corrosion resistance. Adv Eng Mater 7:805

    Google Scholar 

  • Hopkins PE, Salaway RN, Stevens RJ, Norris PM (2007) Temperature-dependent thermal boundary conductance at Al/Al2O3 and Pt/Al2O3 interfaces. Int J Thermophys 28:947

    ADS  Google Scholar 

  • Howe JM (1997) Interfaces in materials: atomic structure, thermodynamics and kinetics of solid-vapor, solid-liquid and solid-solid interfaces. Wiley, New York

    Google Scholar 

  • Hoyt JJ, Asta M (2002) Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag. Phys Rev B 65:214106

    ADS  Google Scholar 

  • Hu M, Poulikakos D, Grigoropoulos CP, Pan H (2010) Recrystallization of picosecond laser-melted ZnO nanoparticles in a liquid: a molecular dynamics study. J Chem Phys 132:164504

    ADS  Google Scholar 

  • Huang SM, Hong MH, Lukiyanchuk B, Chong TC (2003) Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects. Appl Phys A Mater Sci Process 77:293

    ADS  Google Scholar 

  • Huber C, Trügler A, Hohenester U, Prior Y, Kautek W (2014) Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation. Phys Chem Chem Phys 16:2289

    Google Scholar 

  • Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK, Wagman DD (1973) Selected values of the thermodynamic properties of the elements. American Society for Metals, Metals Park

    Google Scholar 

  • Hunziker O, Kurz W (1997) Solidification microstructure maps in NiAl alloys. Acta Mater 45:4981

    ADS  Google Scholar 

  • Hwang D, Ryu S-G, Misra N, Jeon H, Grigoropoulos CP (2009a) Nanoscale laser processing and diagnostics. Appl Phys A Mater Sci Process 96:289

    ADS  Google Scholar 

  • Hwang TY, Vorobyev AY, Guo C (2009b) Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals. Phys Rev B 79:085425

    ADS  Google Scholar 

  • Inoue Y (2007) Effects of acoustic waves-induced dynamic lattice distortion on catalytic and adsorptive properties of metal, alloy and metal oxide surfaces. Surf Sci Rep 62:305

    ADS  Google Scholar 

  • Inoue Y (2019) Acoustic enhancement of surface reactions. MRS Bull 44:361

    Google Scholar 

  • Inoue Y, Matsukawa M, Sato K (1989) Effect of surface acoustic wave generated on ferroelectric support upon catalysis. J Am Chem Soc 111:8965

    Google Scholar 

  • Ionin AA, Kudryashov SI, Ligachev AE, Makarov SV, Seleznev LV, Sinitsyn DV (2011) Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface. JETP Lett 94:266

    ADS  Google Scholar 

  • Ivanov DS, Zhigilei LV (2003a) Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys Rev B 68:064114

    ADS  Google Scholar 

  • Ivanov DS, Zhigilei LV (2003b) Effect of pressure relaxation on the mechanisms of short-pulse laser melting. Phys Rev Lett 91:105701

    ADS  Google Scholar 

  • Ivanov DS, Zhigilei LV (2004) Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness. Appl Phys A Mater Sci Process 79:977

    ADS  Google Scholar 

  • Ivanov DS, Zhigilei LV (2007) Kinetic limit of heterogeneous melting in metals. Phys Rev Lett 98:195701

    ADS  Google Scholar 

  • Ivanov DS, Lin Z, Rethfeld B, O’Connor GM, Glynn TJ, Zhigilei LV (2010) Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film. J Appl Phys 107:013519

    ADS  Google Scholar 

  • Jackson KA (2002) The interface kinetics of crystal growth processes. Interface Sci 10:159

    Google Scholar 

  • Jackson KA, Chalmers B (1956) Kinetics of solidification. Can J Phys 34:473

    ADS  Google Scholar 

  • Jeschke HO, Diakhate MS, Garcia ME (2009) Molecular dynamics simulations of laser-induced damage of nanostructures and solids. Appl Phys A Mater Sci Process 96:33

    ADS  Google Scholar 

  • Jin ZH, Gumbsch P, Lu K, Ma E (2001) Melting mechanisms at the limit of superheating. Phys Rev Lett 87:055703

    ADS  Google Scholar 

  • Jo MC, Guldiken R (2013) Dual surface acoustic wave-based active mixing in a microfluidic channel. Sensors Actuators B Chem 196:1

    Google Scholar 

  • Kanasaki J, Okano A, Ishikawa K, Nakai Y, Itoh N (1995) The DIET from semiconductor surfaces by excitation of valence electrons. Nucl Instrum Methods Phys Res B 101:93

    ADS  Google Scholar 

  • Kapat JS, Wei Z, Kumar A (1998) Role of kinetics in laser processing. Appl Surf Sci 127–129:212

    ADS  Google Scholar 

  • Karim ET, Lin Z, Zhigilei LV (2012) Molecular dynamics study of femtosecond laser interactions with Cr targets. AIP Conf Proc 1464:280

    ADS  Google Scholar 

  • Karim ET, Wu C, Zhigilei LV (2014) Molecular dynamics simulations of laser-materials interactions: general and material-specific mechanisms of material removal and generation of crystal defects. In: Veiko VP, Konov VI (eds) Fundamentals of laser-assisted micro- and nanotechnologies. Springer International Publishing, Cham, p 27

    Google Scholar 

  • Kaspar J, Luft A (2001) Microstructure formed in body centred cubic metals by laser shock processing. Surf Eng 17:379

    Google Scholar 

  • Kasuya D, Kokai F, Takahashi K, Yudasaka M, Iijima S (2001) Formation of C60 using CO2 laser vaporization of graphite at room temperature. Chem Phys Lett 337:25

    ADS  Google Scholar 

  • Kato M (1976) Preparation of ultrafine particles of refractory oxides by gas-evaporation method. Jpn J Appl Phys 15:757

    ADS  Google Scholar 

  • Kelling S, King DA (1998) Acoustic wave enhancement of catalytic reaction rates over platinum surfaces. Platin Met Rev 42:8

    Google Scholar 

  • Kelling S, Mitrelias T, Matsumoto Y, Ostanin VP, King DA (1997) Acoustic wave enhancement of the catalytic oxidation of carbon monoxide over Pt{110}. J Chem Phys 107:5609

    ADS  Google Scholar 

  • Kelling S, Cerasari S, Rotermund HH, Ertl G, King DA (1998) A photoemission electron microscopy (PEEM) study of the effect of surface acoustic waves on catalytic CO oxidation over Pt{110}. Chem Phys Lett 293:325

    ADS  Google Scholar 

  • Kelly A (2000) Crystallography and crystal defects. Wiley, Chichester/New York

    Google Scholar 

  • Kelly R, Dreyfus RW (1988) On the effect of Knudsen-layer formation on studies of vaporization, sputtering, and desorption. Surf Sci 198:263

    ADS  Google Scholar 

  • Kelly R, Miotello A (1996) Comments on explosive mechanisms of laser sputtering. Appl Surf Sci 96–98:205

    ADS  Google Scholar 

  • Kelly R, Miotello A (1999) Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses. Phys Rev E 60:2616

    ADS  Google Scholar 

  • Knacke O, Kubaschewski O, Hesselmann K (1991) Thermochemical properties of inorganic substances. Springer/Verlag Stahleisen, Berlin/New York/Düsseldorf

    Google Scholar 

  • Knight CJ (1979) Theoretical modeling of rapid surface vaporization with back pressure. AIAA J 17:519

    ADS  Google Scholar 

  • Koch J, Korte F, Bauer T, Fallnich C, Ostendorf A, Chichkov BN (2005) Nanotexturing of gold films by femtosecond laser-induced melt dynamics. Appl Phys A Mater Sci Process 81:325

    ADS  Google Scholar 

  • Kosyakov VI, Vasil’eva IG (1979) Phosphorous rings, clusters, chains and layers. Russ Chem Rev 48:153

    ADS  Google Scholar 

  • Kozhushko VV, Lomonosov AM, Hess P (2007) Intrinsic strength of silicon crystals in pure- and combined-mode fracture without precrack. Phys Rev Lett 98:195505

    ADS  Google Scholar 

  • Krischer C, Lichtman D (1973) Observation of desorption from quartz induced by surface acoustic waves. Phys Lett A 44:99

    ADS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162

    ADS  Google Scholar 

  • Kurz W (2001) Solidification microstructure-processing maps: theory and application. Adv Eng Mater 3:443

    Google Scholar 

  • Kuwata M, Luk’yanchuk B, Yabe T (2001) Nanocluster formation within the vapor plume, produced by nanosecond-laser ablation: effect of initial density and pressure distributions. Jpn J Appl Phys 40:4262

    ADS  Google Scholar 

  • Kuznetsov AI, Unger C, Koch J, Chichkov BN (2012) Laser-induced jet formation and droplet ejection from thin metal films. Appl Phys A Mater Sci Process 106:479

    ADS  Google Scholar 

  • Lapotko D, Lukianova E, Potapnev M, Aleinikova O, Oraevsky A (2006) Method of laser activated nano-thermolysis for elimination of tumor cells. Cancer Lett 239:36

    Google Scholar 

  • Le Harzic R, Huot N, Audouard E, Jonin C, Laporte P, Valette S, Fraczkiewicz A, Fortunier R (2002) Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy. Appl Phys Lett 80:3886

    ADS  Google Scholar 

  • Lee HS, Merte H (1996) Spherical vapor bubble growth in uniformly superheated liquids. Int J Heat Mass Transf 39:2427

    MATH  Google Scholar 

  • Lemaster JE, Jokerst JV (2017) What is new in nanoparticle-based photoacoustic imaging? Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:e1404

    Google Scholar 

  • Leveugle E, Zhigilei LV (2004) Microscopic mechanisms of short pulse laser spallation of molecular solids. Appl Phys A Mater Sci Process 79:753

    ADS  Google Scholar 

  • Leveugle E, Ivanov DS, Zhigilei LV (2004) Photomechanical spallation of molecular and metal targets: molecular dynamics study. Appl Phys A Mater Sci Process 79:1643

    ADS  Google Scholar 

  • Levy Y, Derrien TJY, Bulgakova NM, Gurevich EL, Mocek T (2016) Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl Surf Sci 374:157

    ADS  Google Scholar 

  • Lin B, Elsayed-Ali HE (2002) Temperature dependent reflection electron diffraction study of In(111) and observation of laser-induced transient surface superheating. Surf Sci 498:275

    ADS  Google Scholar 

  • Lin CJ, Spaepen F (1983) Metallic glasses and metastable crystalline phases produced by picosecond pulsed laser quenching. MRS Proc 28:75

    Google Scholar 

  • Lin CJ, Spaepen F (1986) Nickel-niobium alloys obtained by picosecond pulsed laser quenching. Acta Metall 34:1367

    Google Scholar 

  • Lin Z, Zhigilei LV (2006) Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: molecular dynamics study. Phys Rev B 73:184113

    ADS  Google Scholar 

  • Lin Z, Zhigilei LV (2007a) Temperature dependences of the electron–phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation. Appl Surf Sci 253:6295

    ADS  Google Scholar 

  • Lin Z, Zhigilei LV (2007b) Time-resolved diffraction profiles and structural dynamics of Ni film under short laser pulse irradiation. J Phys Conf Ser 59:11

    ADS  Google Scholar 

  • Lin C-J, Spaepen F, Turnbull D (1984) Picosecond pulsed laser-induced melting and glass formation in metals. J Non-Cryst Solids 61–62:767

    ADS  Google Scholar 

  • Lin Z, Zhigilei LV, Celli V (2008a) Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B 77:075133

    ADS  Google Scholar 

  • Lin Z, Johnson RA, Zhigilei LV (2008b) Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses. Phys Rev B 77:214108

    ADS  Google Scholar 

  • Lin Z, Leveugle E, Bringa EM, Zhigilei LV (2010) Molecular dynamics simulation of laser melting of nanocrystalline Au. J Phys Chem C 114:5686

    Google Scholar 

  • Lindner B, Seydel U (1985) Laser desorption mass spectrometry of nonvolatiles under shock wave conditions. Anal Chem 57:895

    Google Scholar 

  • Lipp VP, Rethfeld B, Garcia ME, Ivanov DS (2014) Atomistic-continuum modeling of short laser pulse melting of Si targets. Phys Rev B 90:245306

    ADS  Google Scholar 

  • Lomonosov A, Mayer AP, Hess P (2001) Laser-based surface acoustic waves in materials science. In: Levy M, Bass HE, Stern R (eds) Experimental methods in the physical sciences. Academic, New York

    Google Scholar 

  • Lorazo P, Lewis LJ, Meunier M (2006) Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys Rev B 73:134108

    ADS  Google Scholar 

  • Lu Y, Chen SC (2003) Nanopatterning of a silicon surface by near-field enhanced laser irradiation. Nanotechnology 14:505

    ADS  Google Scholar 

  • Lu HM, Jiang Q (2005) Surface tension and its temperature coefficient for liquid metals. J Phys Chem B 109:15463

    Google Scholar 

  • Lu K, Li Y (1998) Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal. Phys Rev Lett 80:4474

    ADS  Google Scholar 

  • Lu Y, Zhang H, Liu F (2005) UV–visible reflectance spectra of nanocrystalline silver compacted under different pressures. Phys Lett A 342:351

    ADS  Google Scholar 

  • Luo S-N, Ahrens TJ, Çağın T, Strachan A, Goddard WA, Swift DC (2003) Maximum superheating and undercooling: systematics, molecular dynamics simulations, and dynamic experiments. Phys Rev B 68:134206

    ADS  Google Scholar 

  • Ma X, Zhang Y, Lei H-R, Kenttämaa HI (2019) Laser-induced acoustic desorption. MRS Bull 44:372

    Google Scholar 

  • MacDonald CA, Malvezzi AM, Spaepen F (1989) Picosecond time-resolved measurements of crystallization in noble metals. J Appl Phys 65:129

    ADS  Google Scholar 

  • Manzo AJ, Helvajian H (2014) Demonstration of enhanced surface mobility of adsorbate cluster species by surface acoustic wave excitation induced by a pulsed laser. Proc SPIE 8969:896908

    Google Scholar 

  • Margetic V, Niemax K, Hergenröder R (2003) Application of femtosecond laser ablation time-of-flight mass spectrometry to in-depth multilayer analysis. Anal Chem 75:3435

    Google Scholar 

  • Marla D, Bhandarkar UV, Joshi SS (2014) A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding. Appl Phys A Mater Sci Process 116:273

    ADS  Google Scholar 

  • Martynyuk MM (1974) Vaporization and boiling of liquid metal in an exploding wire. Sov Phys Tech-Phys 19:793

    ADS  Google Scholar 

  • Martynyuk MM (1977) Phase explosion of a metastable fluid. Combust Explos Shock Waves 13:178

    Google Scholar 

  • Martynyuk MM (1983) Critical constants of metals. Russ J Phys Chem 57:494

    Google Scholar 

  • Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819

    ADS  Google Scholar 

  • Mazevet S, Clérouin J, Recoules V, Anglade PM, Zerah G (2005) Ab-Initio simulations of the optical properties of warm dense gold. Phys Rev Lett 95:085002

    ADS  Google Scholar 

  • Mazzi A, Miotello A (2017) Simulation of phase explosion in the nanosecond laser ablation of aluminum. J Colloid Interface Sci 489:126

    ADS  Google Scholar 

  • Mazzi A, Gorrini F, Miotello A (2015) Liquid nanodroplet formation through phase explosion mechanism in laser-irradiated metal targets. Phys Rev E 92:031301

    ADS  Google Scholar 

  • Mazzi A, Gorrini F, Miotello A (2017) Dynamics of liquid nanodroplet formation in nanosecond laser ablation of metals. Appl Surf Sci 418:601

    ADS  Google Scholar 

  • Mazzi A, Orlandi M, Patel N, Miotello A (2018) Laser-inducing extreme thermodynamic conditions in condensed matter to produce nanomaterials for catalysis and the photocatalysis. In: Ossi PM (ed) Advances in the application of lasers in materials science. Springer International Publishing, Cham, p 89

    Google Scholar 

  • Melia MA, Serron ML, Florian DC, Weiler JP, Scully JR, Fitz-Gerald JM (2016) Excimer laser processing of cast Mg-Al-Zn (AZ91D) and Mg-Al (AM60B) alloys for improved corrosion resistance. Corrosion 72:1580

    Google Scholar 

  • Melia MA, Florian DC, Steuer FW, Briglia BF, Purzycki MK, Scully JR, Fitz-Gerald JM (2017) Investigation of critical processing parameters for laser surface processing of AZ31B-H24. Surf Coat Tech 325:157

    Google Scholar 

  • Merabia S, Shenogin S, Joly L, Keblinski P, Barrat J-L (2009a) Heat transfer from nanoparticles: a corresponding state analysis. Proc Natl Acad Sci U S A 106:15113

    ADS  Google Scholar 

  • Merabia S, Keblinski P, Joly L, Lewis LJ, Barrat J-L (2009b) Critical heat flux around strongly heated nanoparticles. Phys Rev E 79:021404

    ADS  Google Scholar 

  • Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427

    Google Scholar 

  • Miller GF, Pursey H (1955) On the partition of energy between elastic waves in a semi-infinite solid. Proc R Soc London Ser A 233:55

    ADS  MATH  Google Scholar 

  • Miotello A, Kelly R (1995) Critical assessment of thermal models for laser sputtering at high fluences. Appl Phys Lett 67:3535

    ADS  Google Scholar 

  • Miotello A, Kelly R (1999) Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl Phys A Mater Sci Process 69:S67

    ADS  Google Scholar 

  • Mishin Y (2004) Atomistic modeling of the γ and γ′-phases of the Ni–Al system. Acta Mater 52:1451

    ADS  Google Scholar 

  • Mo MZ et al (2018) Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science 360:1451

    ADS  Google Scholar 

  • Molian PA (1989) Surface alloying using lasers. In: Sudarshan TS (ed) Surface modification technologies. Marcel Dekker, New York, p 421

    Google Scholar 

  • Møller SH, Eriksen EH, Tønning PL, Jensen PB, Chevallier J, Balling P (2018) Femtosecond-laser-induced modifications of Ge2Sb2Te5 thin films: permanent optical change without amorphization. Appl Surf Sci 476:221

    ADS  Google Scholar 

  • Morozov AA (2004) Thermal model of pulsed laser ablation: back flux contribution. Appl Phys A Mater Sci Process 79:997

    ADS  Google Scholar 

  • Morozov AA (2006) Back flux at polyatomic gas expansion for pulsed laser evaporation. Appl Surf Sci 252:2978

    ADS  Google Scholar 

  • Murray PT, Shin E (2008) Formation of silver nanoparticles by through thin film ablation. Mater Lett 62:4336

    Google Scholar 

  • Naghilou A, He M, Schubert JS, Zhigilei LV, Kautek W (2019) Femtosecond laser generation of microbumps and nanojets on single and stacked Cu/Ag thin films. Phys Chem Chem Phys 21:11846

    Google Scholar 

  • Naghilou A, Armbruster O, Kautek W (2020) Laser-induced non-thermal processes. In: Handbook of laser micro- and nano-engineering. Springer, Cham

    Google Scholar 

  • Narasaki T (1983) The effect of temperature gradient on the motion of a bubble in reduced gravity. Adv Space Res 3:137

    ADS  Google Scholar 

  • Nerushev OA, Sukhinin GI (1995) Kinetics of fullerene formation by electric-arc vaporization of graphite (in Russian). Pisma Zh Tekh Fiz 21:50

    Google Scholar 

  • Nishiyama H, Saito N, Chou H, Sato K, Inoue Y (1999) Effects of surface acoustic waves on adsorptive properties of ZnO and NiO thin films deposited on ferroelectric substrates. Surf Sci 433–435:525

    ADS  Google Scholar 

  • Nishiyama H, Rattana N, Saito N, Sato K, Inoue Y (2000) Effects of Rayleigh surface acoustic wave upon adsorptive and surface properties of a thin NiO film. J Phys Chem B 104:10602

    Google Scholar 

  • Nørskov JK, Bligaard T, Hvolbæk B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37:2163

    Google Scholar 

  • Oguz Er A, Chen J, Tang J, Rentzepis PM (2012) Coherent acoustic wave oscillations and melting on Ag(111) surface by time resolved x-ray diffraction. Appl Phys Lett 100:151910

    ADS  Google Scholar 

  • Osipov VV, Platonov VV, Lisenkov VV, Tikhonov EV, Podkin AV (2018) Study of nanoparticle production from yttrium oxide by pulse-periodic radiation of ytterbium fibre laser. Appl Phys A Mater Sci Process 124:3

    ADS  Google Scholar 

  • Paltauf G, Dyer PE (2003) Photomechanical processes and effects in ablation. Chem Rev 103:487

    Google Scholar 

  • Pan QY, Huang WD, Lin X, Zhou YH (1997) Primary spacing selection of Cu-Mn alloy under laser rapid solidification condition. J Cryst Growth 181:109

    ADS  Google Scholar 

  • Pan QY, Lin X, Huang WD, Zhou YH, Zhang GL (1998) Microstructure evolution of Cu–Mn alloy under laser rapid solidification conditions. Mater Res Bull 33:1621

    Google Scholar 

  • Papadopoulou EL, Barberoglou M, Zorba V, Manousaki A, Pagkozidis A, Stratakis E, Fotakis C (2009) Reversible photoinduced wettability transition of hierarchical ZnO structures. J Phys Chem C 113:2891

    Google Scholar 

  • Picard YN, Adams DP, Yalisove SM (2004) Femtosecond laser interactions with Co/Al multilayer films. MRS Proc 850. MM1.9

    Google Scholar 

  • Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023

    Google Scholar 

  • Polushkin NI, Oliveira V, Vilar R, He M, Shugaev MV, Zhigilei LV (2018) Phase-change magnetic memory: rewritable ferromagnetism by laser quenching of chemical disorder in Fe60Al40 alloy. Phys Rev Appl 10:024023

    ADS  Google Scholar 

  • Porneala C, Willis DA (2009) Time-resolved dynamics of nanosecond laser-induced phase explosion. J Phys D 42:155503

    ADS  Google Scholar 

  • Prokhorov AM, Konov VI, Ursu I, Mihailescu IN (1990) Laser heating of metals. Adam Hilger, Bristol/Philadelphia/New York

    Google Scholar 

  • Pronko PP, Dutta SK, Squier J, Rudd JV, Du D, Mourou G (1995) Machining of sub-micron holes using a femtosecond laser at 800 nm. Opt Commun 114:106

    ADS  Google Scholar 

  • Pudell J, Maznev AA, Herzog M, Kronseder M, Back CH, Malinowski G, von Reppert A, Bargheer M (2018) Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction. Nat Commun 9:3335

    ADS  Google Scholar 

  • Pustovalov VK, Smetannikov AS, Zharov VP (2008) Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys Lett 5:775

    Google Scholar 

  • Qiu TQ, Tien CL (1994) Femtosecond laser heating of multi-layer metals – I. Analysis. Int J Heat Mass Transf 37:2789

    Google Scholar 

  • Qiu TQ, Juhasz T, Suarez C, Bron WE, Tien CL (1994) Femtosecond laser heating of multi-layer metals – II. Experiments. Int J Heat Mass Transf 37:2799

    Google Scholar 

  • Ratsch C, Seitsonen AP, Scheffler M (1997) Strain dependence of surface diffusion: Ag on Ag(111) and Pt(111). Phys Rev B 55:6750

    ADS  Google Scholar 

  • Reese SJ, Hurley DH, Rollins HW (2006) Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation. Ultrason Sonochem 13:283

    Google Scholar 

  • Reif J, Varlamova O, Costache F (2008) Femtosecond laser induced nanostructure formation: self-organization control parameters. Appl Phys A Mater Sci Process 92:1019

    ADS  Google Scholar 

  • Rethfeld B, Sokolowski-Tinten K, von der Linde D, Anisimov SI (2002) Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys Rev B 092103:65

    Google Scholar 

  • Roland C, Gilmer GH (1992) Epitaxy on surfaces vicinal to Si(001). I. Diffusion of silicon adatoms over the terraces. Phys Rev B 46:13428

    ADS  Google Scholar 

  • Rosenberg R (2005) Why ice is slippery?. Phys Today 58:50

    Google Scholar 

  • Rousse A et al (2001) Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410:65

    ADS  Google Scholar 

  • Saeta P, Wang JK, Siegal Y, Bloembergen N, Mazur E (1991) Ultrafast electronic disordering during femtosecond laser melting of GaAs. Phys Rev Lett 67:1023

    ADS  Google Scholar 

  • Saito N, Nishiyama H, Inoue Y (2001) Acoustic wave effects on catalysis: design of surfaces with artificially controllable functions for chemical reactions. Appl Surf Sci 169–170:259

    ADS  Google Scholar 

  • Savolainen J-M, Christensen MS, Balling P (2011) Material swelling as the first step in the ablation of metals by ultrashort laser pulses. Phys Rev B 84:193410

    ADS  Google Scholar 

  • Schmera G, Kish LB (2003) Surface diffusion enhanced chemical sensing by surface acoustic waves. Sensors Actuators B Chem 93:159

    Google Scholar 

  • Schmidt H, Ihlemann J, Wolff-Rottke B, Luther K, Troe J (1998) Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained. J Appl Phys 83:5458

    ADS  Google Scholar 

  • Schmidt V, Husinsky W, Betz G (2000) Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale. Phys Rev Lett 85:3516

    ADS  Google Scholar 

  • Schroeder M, Wolf DE (1997) Diffusion on strained surfaces. Surf Sci 375:129

    ADS  Google Scholar 

  • Sedao X, Maurice C, Garrelie F, Colombier J-P, Reynaud S, Quey R, Pigeon F (2014a) Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation. Appl Phys Lett 104:171605

    ADS  Google Scholar 

  • Sedao X, Maurice C, Garrelie F, Colombier J-P, Reynaud S, Quey R, Blanc G, Pigeon F (2014b) Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface. Appl Surf Sci 302:114

    ADS  Google Scholar 

  • Sedao X et al (2016) Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano 10:6995

    Google Scholar 

  • Semerok A, Dutouquet C (2004) Ultrashort double pulse laser ablation of metals. Thin Solid Films 453–454:501

    Google Scholar 

  • Shank CV, Yen R, Hirlimann C (1983) Femtosecond-time-resolved surface structural dynamics of optically excited silicon. Phys Rev Lett 51:900

    ADS  Google Scholar 

  • Shih C-Y, Shugaev MV, Wu C, Zhigilei LV (2017) Generation of subsurface voids, incubation effect, and formation of nanoparticles in short pulse laser interactions with bulk metal targets in liquid: molecular dynamics study. J Phys Chem C 121:16549

    Google Scholar 

  • Shih C-Y et al (2018) Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10:6900

    Google Scholar 

  • Shugaev MV, Bulgakova NM (2010) Thermodynamic and stress analysis of laser-induced forward transfer of metals. Appl Phys A Mater Sci Process 101:103

    ADS  Google Scholar 

  • Shugaev MV, Zhigilei LV (2019) Thermodynamic analysis and atomistic modeling of subsurface cavitation in photomechanical spallation. Comput Mater Sci 166:311

    Google Scholar 

  • Shugaev MV, Zhigilei LV (in preparation)

    Google Scholar 

  • Shugaev MV, Manzo AJ, Wu C, Zaitsev VY, Helvajian H, Zhigilei LV (2015) Strong enhancement of surface diffusion by nonlinear surface acoustic waves. Phys Rev B 91:235450

    ADS  Google Scholar 

  • Shugaev MV, Shih C-Y, Karim ET, Wu C, Zhigilei LV (2017a) Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer. Appl Surf Sci 417:54

    ADS  Google Scholar 

  • Shugaev MV, Gnilitskyi I, Bulgakova NM, Zhigilei LV (2017b) Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys Rev B 96:205429

    ADS  Google Scholar 

  • Shugaev MV, He M, Lizunov SA, Levy Y, Derrien TJY, Zhukov VP, Bulgakova NM, Zhigilei LV (2018) Insights into laser-materials interaction through modeling on atomic and macroscopic scales. In: Ossi PM (ed) Advances in the application of lasers in materials science. Springer International Publishing, Cham, p 107

    Google Scholar 

  • Shugaev MV, Wu C, Zaitsev VY, Zhigilei LV (2020) Molecular dynamics modeling of nonlinear propagation of surface acoustic waves. J Appl Phys 128:045117

    Google Scholar 

  • Sibold D, Urbassek HM (1993) Monte Carlo study of Knudsen layers in evaporation from elemental and binary media. Phys Fluids A 5:243

    ADS  Google Scholar 

  • Siders CW et al (1999) Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286:1340

    Google Scholar 

  • Siems A, Weber SAL, Boneberg J, Plech A (2011) Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New J Phys 13:043018

    Google Scholar 

  • Silvestrelli PL, Alavi A, Parrinello M, Frenkel D (1996) Ab initio molecular dynamics simulation of laser melting of silicon. Phys Rev Lett 77:3149

    ADS  Google Scholar 

  • Sipe JE, Young JF, Preston JS, van Driel HM (1983) Laser-induced periodic surface structure. I. Theory. Phys Rev B 27:1141

    ADS  Google Scholar 

  • Siwick BJ, Dwyer JR, Jordan RE, Miller RJD (2003) An atomic-level view of melting using femtosecond electron diffraction. Science 302:1382

    ADS  Google Scholar 

  • Skirtach AG, Dejugnat C, Braun D, Susha AS, Rogach AL, Parak WJ, Möhwald H, Sukhorukov GB (2005) The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett 5:1371

    ADS  Google Scholar 

  • Skripov VP, Kondor R, Slutzkin D (1974) Metastable liquids. Wiley/Israel Program for Scientific Translations, New York/Chichester/Jerusalem/London

    Google Scholar 

  • Smoluchowski M (1916) Drei vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen (in German). Phys Z 17:557

    ADS  Google Scholar 

  • Sokolowski-Tinten K, Bialkowski J, Boing M, Cavalleri A, von der Linde D (1998) Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Phys Rev B 58:R11805

    ADS  Google Scholar 

  • Spaepen FA, Lin C-J (1984) Partitionless crystallization and glass formation in Fe-B alloys during picosecond pulsed laser quenching. In: von Allmen M (ed) Amorphous metals and non-equilibrium processing. Les Editions de Physique, Les Ulis

    Google Scholar 

  • Spaepen F, Turnbull D (1979) Kinetics of motion of crystal-melt interfaces. AIP Conf Proc 50:73

    ADS  Google Scholar 

  • Starikov SV, Pisarev VV (2015) Atomistic simulation of laser-pulse surface modification: predictions of models with various length and time scales. J Appl Phys 117:135901

    ADS  Google Scholar 

  • Starinskiy SV, Shukhov YG, Bulgakov AV (2016) Dynamics of pulsed laser ablation of gold in vacuum in the regime of nanostructured film synthesis. Tech Phys Lett 42:411

    ADS  Google Scholar 

  • Stevens RJ, Zhigilei LV, Norris PM (2007) Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: nonequilibrium molecular dynamics simulations. Int J Heat Mass Transf 50:3977

    MATH  Google Scholar 

  • Stolk PA, Polman A, Sinke WC (1993) Experimental test of kinetic theories for heterogeneous freezing in silicon. Phys Rev B 47:5

    Google Scholar 

  • Su SS, Chang I (2018) Review of production routes of nanomaterials. In: Brabazon D et al. (eds) Commercialization of nanotechnologies – a case study approach. Springer International Publishing AG, Cham, p 15

    Google Scholar 

  • Sun DY, Asta M, Hoyt JJ (2004) Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations. Phys Rev B 69:024108

    ADS  Google Scholar 

  • Thomas DA, Lin Z, Zhigilei LV, Gurevich EL, Kittel S, Hergenröder R (2009) Atomistic modeling of femtosecond laser-induced melting and atomic mixing in Au film – Cu substrate system. Appl Surf Sci 255:9605

    ADS  Google Scholar 

  • Trudeau ML, Ying JY (1996) Nanocrystalline materials in catalysis and electrocatalysis: structure tailoring and surface reactivity. Nanostruct Mater 7:245

    Google Scholar 

  • Tsao JY, Aziz MJ, Thompson MO, Peercy PS (1986) Asymmetric melting and freezing kinetics in silicon. Phys Rev Lett 56:2712

    ADS  Google Scholar 

  • Turnbull D (1962) On the relation between crystallization rate and liquid structure. J Phys Chem 66:609

    Google Scholar 

  • Turnbull D (1981) Metastable structures in metallurgy. Metall Trans A 12:695

    Google Scholar 

  • Turnbull D, Cech RE (1950) Microscopic observation of the solidification of small metal droplets. J Appl Phys 21:804

    ADS  Google Scholar 

  • Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71

    ADS  Google Scholar 

  • Upadhyay AK, Inogamov NA, Rethfeld B, Urbassek HM (2008) Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold. Phys Rev B 78:045437

    ADS  Google Scholar 

  • Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res 17:5

    ADS  Google Scholar 

  • van der Veen JF (1999) Melting and freezing at surfaces. Surf Sci 1:433–435

    Google Scholar 

  • Vilar R (2020) Microstructure modification: generation of crystal defects and phase transformations. In: Handbook of laser micro- and nano-engineering. Springer, Cham

    Google Scholar 

  • Vincenc Oboňa J, Ocelík V, Rao JC, Skolski JZP, Römer GRBE, Huis in ‘t Veld AJ, Hosson JTMD (2014) Modification of Cu surface with picosecond laser pulses. Appl Surf Sci 303:118

    ADS  Google Scholar 

  • Viswanath DS, Kuloor NR (1966) Latent heat of vaporization, surface tension, and temperature. J Chem Eng Data 11:69

    Google Scholar 

  • Volkov AN, Sevilla C, Zhigilei LV (2007) Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water. Appl Surf Sci 253:6394

    ADS  Google Scholar 

  • Volmer M, Weber A (1926) Nucleation of supersaturated structures. Z Phys Chem 119:277

    Google Scholar 

  • von Allmen M, Blatter A (1998) Laser beam interactions with materials. Springer, Berlin

    Google Scholar 

  • von Helden G, Hsu MT, Gotts N, Bowers MT (1993) Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity. J Phys Chem 97:8182

    Google Scholar 

  • Vorobyev AY, Guo C (2005) Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys Rev B 72:195422

    ADS  Google Scholar 

  • Vorobyev AY, Guo C (2007) Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals. Appl Phys A Mater Sci Process 86:321

    ADS  Google Scholar 

  • Vorobyev AY, Guo C (2008a) Femtosecond laser blackening of platinum. J Appl Phys 104:053516

    ADS  Google Scholar 

  • Vorobyev AY, Guo C (2008b) Colorizing metals with femtosecond laser pulses. Appl Phys Lett 92:041914

    ADS  Google Scholar 

  • Vorobyev AY, Guo C (2009) Metal pumps liquid uphill. Appl Phys Lett 94:224102

    ADS  Google Scholar 

  • Vorobyev AY, Guo C (2010) Laser turns silicon superwicking. Opt Express 18:6455

    ADS  Google Scholar 

  • Wang W, Cahill DG (2012) Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu. Phys Rev Lett 109:175503

    ADS  Google Scholar 

  • Wang J, Li J, Yip S, Wolf D, Phillpot S (1997) Unifying two criteria of Born: Elastic instability and melting of homogeneous crystals. Physica A 240:396

    ADS  Google Scholar 

  • Wang H, Pyatenko A, Kawaguchi K, Li X, Swiatkowska-Warkocka Z, Koshizaki N (2010) Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. Angew Chem Int Ed 49:6361

    Google Scholar 

  • Wang Y, Lu Z, Ruan X (2016) First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering. J Appl Phys 119:225109

    ADS  Google Scholar 

  • Watanabe Y, Inoue Y, Sato K (1996) Activation of a thin film Pd catalyst for CO and ethanol oxidation by surface acoustic waves. Surf Sci 357–358:769

    ADS  Google Scholar 

  • Watson KM (1943) Thermodynamics of the liquid state. Ind Eng Chem 35:398

    Google Scholar 

  • Wellershoff S-S, Hohlfeld J, Güdde J, Matthias E (1999) The role of electron–phonon coupling in femtosecond laser damage of metals. Appl Phys A Mater Sci Process 69:S99

    Google Scholar 

  • Williamson S, Mourou G, Li JCM (1984) Time-resolved laser-induced phase transformation in aluminum. Phys Rev Lett 52:2364

    ADS  Google Scholar 

  • Woychik CG, Lowndes DH, Massalski TB (1985) Solidification structures in melt-spun and pulsed laser-quenched Cu-Ti alloys. Acta Metall 33:1861

    Google Scholar 

  • Wu MW, Metiu H (2000) The effect of strain on the adsorption of CO on Pd(100). J Chem Phys 113:1177

    ADS  Google Scholar 

  • Wu C, Zhigilei LV (2014) Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl Phys A Mater Sci Process 114:11

    ADS  Google Scholar 

  • Wu C, Zhigilei LV (2016) Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse. J Phys Chem C 120:4438

    Google Scholar 

  • Wu C, Thomas DA, Lin Z, Zhigilei LV (2011) Runaway lattice-mismatched interface in an atomistic simulation of femtosecond laser irradiation of Ag film–Cu substrate system. Appl Phys A Mater Sci Process 104:781

    ADS  Google Scholar 

  • Wu C, Zaitsev VY, Zhigilei LV (2013) Acoustic enhancement of surface diffusion. J Phys Chem C 117:9252

    Google Scholar 

  • Wu C, Karim ET, Volkov AN, Zhigilei LV (2014) Atomic movies of laser-induced structural and phase transformations from molecular dynamics simulations. In: Castillejo M, Ossi PM, Zhigilei L (eds) Lasers in materials science. Springer International Publishing, Cham, p 67

    Google Scholar 

  • Wu C, Christensen MS, Savolainen J-M, Balling P, Zhigilei LV (2015) Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target. Phys Rev B 91:035413

    ADS  Google Scholar 

  • Xu X, Chen G, Song KH (1999) Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel. Int J Heat Mass Transf 42:1371

    Google Scholar 

  • Yang S, Wang ZJ, Kokawa H, Sato YS (2007) Grain boundary engineering of 304 austenitic stainless steel by laser surface melting and annealing. J Mater Sci 42:847

    ADS  Google Scholar 

  • Yeo LY, Friend JR (2014) Surface acoustic wave microfluidics. Annu Rev Fluid Mech 46:379

    ADS  MathSciNet  MATH  Google Scholar 

  • Yoo JH, Jeong SH, Greif R, Russo RE (2000) Explosive change in crater properties during high power nanosecond laser ablation of silicon. J Appl Phys 88:1638

    ADS  Google Scholar 

  • Yoshiki N, Tatsuo O, Mitsuo M (2003) Nano-sized hollow bump array generated by single femtosecond laser pulse. Jpn J Appl Phys 42:L1452

    Google Scholar 

  • Zeldovich YB, Raizer YP (1966) Physics of shock waves and high temperature hydrodynamics phenomena. Academic, New York

    Google Scholar 

  • Zeng X, Mao XL, Greif R, Russo RE (2005) Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl Phys A Mater Sci Process 80:237

    ADS  Google Scholar 

  • Zhang D, Gökce B, Barcikowski S (2017) Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117:3990

    Google Scholar 

  • Zhao Q-Z, Malzer S, Wang L-J (2007) Self-organized tungsten nanospikes grown on subwavelength ripples induced by femtosecond laser pulses. Opt Express 15:15741

    ADS  Google Scholar 

  • Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS (2006) Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:619

    Google Scholar 

  • Zhigilei LV (2003) Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation. Appl Phys A Mater Sci Process 76:339

    ADS  Google Scholar 

  • Zhigilei LV, Garrison BJ (2000) Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J Appl Phys 88:1281

    ADS  Google Scholar 

  • Zhigilei LV, Helvajian H (2019) Acoustic processes in materials. MRS Bull 44:345

    Google Scholar 

  • Zhigilei LV, Ivanov DS (2005) Channels of energy redistribution in short-pulse laser interactions with metal targets. Appl Surf Sci 248:433

    ADS  Google Scholar 

  • Zhigilei LV, Ivanov DS, Leveugle E, Sadigh B, Bringa EM (2004) Computer modeling of laser melting and spallation of metal targets. Proc SPIE 5448:505

    ADS  Google Scholar 

  • Zhigilei LV, Lin Z, Ivanov DS (2009) Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J Phys Chem C 113:11892

    Google Scholar 

  • Zhigilei LV, Lin Z, Ivanov DS, Leveugle E, Duff WH, Thomas D, Sevilla C, Guy SJ (2010) Atomic/molecular-level simulations of laser-materials interactions. In: Miotello A, Ossi PM (eds) Laser-surface interactions for new materials production: tailoring structure and properties. Springer, New York, p 43

    Google Scholar 

  • Ziefuß AR, Reichenberger S, Rehbock C, Chakraborty I, Gharib M, Parak WJ, Barcikowski S (2018) Laser fragmentation of colloidal gold nanoparticles with high-intensity nanosecond pulses is driven by a single-step fragmentation mechanism with a defined educt particle-size threshold. J Phys Chem C 122:22125

    Google Scholar 

  • Zier T, Zijlstra ES, Kalitsov A, Theodonis I, Garcia ME (2015) Signatures of nonthermal melting. Struct Dyn 2:054101

    Google Scholar 

  • Zinovev AV, Veryovkin IV, Moore JF, Pellin MJ (2007) Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils. Anal Chem 79:8232

    Google Scholar 

Download references

Acknowledgments

M.V.S., M.H., and L.V.Z. acknowledge financial support provided by the National Science Foundation (NSF) through Grants CMMI-1562929, CMMI-1663429, DMR-1610936, and DMR-1708486. Y.L. and N.M.B. acknowledge support of the European Regional Development Fund and the state budget of the Czech Republic (project BIATRI, No. CZ.02.1.01/0.0/0.0/15_003/0000445; project HiLASE CoE, No. CZ.02.1.01/0.0/0.0/15_006/0000674; programme NPU I, project No. LO1602). Computational support enabling large-scale atomistic modeling was provided by the Oak Ridge Leadership Computing Facility (INCITE project MAT130) and NSF through the Extreme Science and Engineering Discovery Environment (project TG-DMR110090). The authors also appreciate the help provided by Mikhail Arefev with preparation of Fig. 16.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Miotello , Nadezhda M. Bulgakova or Leonid V. Zhigilei .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shugaev, M.V. et al. (2020). Laser-Induced Thermal Processes: Heat Transfer, Generation of Stresses, Melting and Solidification, Vaporization, and Phase Explosion. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics