Skip to main content

In Vitro Reconstitution of Molecular Motor-Driven Mitochondrial Transport

  • Protocol
  • First Online:
Axonal Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2431))

Abstract

Intracellular trafficking of organelles driven by molecular motors underlies essential cellular processes. Mitochondria, the powerhouses of the cell, are one of the major cargoes of molecular motors. Efficient distribution of mitochondria ensures cellular fitness while defects in this process contribute to severe pathologies, such as neurodegenerative diseases. Reconstitution of the mitochondrial microtubule-based transport in vitro in a bottom-up approach provides a powerful tool to investigate the mitochondrial trafficking machinery in a controlled environment in the absence of complex intracellular interactions. In this chapter, we describe the procedures for achieving such reconstitution of mitochondrial transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanaka Y, Kanai Y, Okada Y et al (1998) Targeted disruption of mouse conventional kinesin heavy chain kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158. https://doi.org/10.1016/S0092-8674(00)81459-2

    Article  CAS  PubMed  Google Scholar 

  2. Chang DTW, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 80:241–268. https://doi.org/10.1016/j.pneurobio.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  3. Correia SC, Perry G, Moreira PI (2016) Mitochondrial traffic jams in Alzheimer’s disease—pinpointing the roadblocks. Biochim Biophys Acta Mol basis Dis 1862:1909–1917. https://doi.org/10.1016/j.bbadis.2016.07.010

    Article  CAS  Google Scholar 

  4. Hsieh C-H, Shaltouki A, Gonzalez AE et al (2016) Functional impairment in Miro degradation and Mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19:709–724. https://doi.org/10.1016/j.stem.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmad T, Mukherjee S, Pattnaik B et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33:994–1010. https://doi.org/10.1002/embj.201386030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong L-F, Kovarova J, Bajzikova M et al (2017) Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 6:e22187. https://doi.org/10.7554/eLife.22187

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010. https://doi.org/10.1126/science.1093133

    Article  CAS  PubMed  Google Scholar 

  8. Bajzikova M, Kovarova J, Coelho AR et al (2019) Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab 29:399–416.e10. https://doi.org/10.1016/j.cmet.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  9. Tan AS, Baty JW, Dong L-F et al (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21:81–94. https://doi.org/10.1016/j.cmet.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Schwarz TL (2009) The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–174. https://doi.org/10.1016/j.cell.2008.11.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75. https://doi.org/10.1038/317073a0

    Article  CAS  PubMed  Google Scholar 

  12. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50. https://doi.org/10.1016/s0092-8674(85)80099-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vale RD, Schnapp BJ, Mitchison T et al (1985) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell 43:623–632. https://doi.org/10.1016/0092-8674(85)90234-X

    Article  CAS  PubMed  Google Scholar 

  14. Stowers RS, Megeath LJ, Górska-Andrzejak J et al (2002) Axonal transport of mitochondria to synapses depends on Milton, a novel drosophila protein. Neuron 36:1063–1077. https://doi.org/10.1016/S0896-6273(02)01094-2

    Article  CAS  PubMed  Google Scholar 

  15. Brickley K, Smith MJ, Beck M, Stephenson FA (2005) GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J Biol Chem 280:14723–14732. https://doi.org/10.1074/jbc.M409095200

    Article  CAS  PubMed  Google Scholar 

  16. Fransson Å, Ruusala A, Aspenström P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344:500–510. https://doi.org/10.1016/j.bbrc.2006.03.163

    Article  CAS  PubMed  Google Scholar 

  17. Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires Milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557. https://doi.org/10.1083/jcb.200601067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Spronsen M, Mikhaylova M, Lipka J et al (2013) TRAK/Milton Motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77:485–502. https://doi.org/10.1016/j.neuron.2012.11.027

    Article  CAS  PubMed  Google Scholar 

  19. Brickley K, Stephenson FA (2011) Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 286:18079–18092

    Article  CAS  Google Scholar 

  20. Guo X, Macleod GT, Wellington A et al (2005) The GTPase dMiro is required for axonal transport of mitochondria to drosophila synapses. Neuron 47:379–393. https://doi.org/10.1016/j.neuron.2005.06.027

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Hajnóczky G (2009) Ca2+−dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int J Biochem Cell Biol 41:1972–1976. https://doi.org/10.1016/j.biocel.2009.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. MacAskill AF, Rinholm JE, Twelvetrees AE et al (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61:541–555. https://doi.org/10.1016/j.neuron.2009.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Desai SP, Bhatia SN, Toner M, Irimia D (2013) Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 104:2077–2088

    Article  CAS  Google Scholar 

  24. Nguyen TT, Oh SS, Weaver D et al (2014) Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc Natl Acad Sci 111:E3631–E3640

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gell C, Bormuth V, Brouhard GJ et al (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245. https://doi.org/10.1016/S0091-679X(10)95013-9

    Article  CAS  PubMed  Google Scholar 

  26. Mahamdeh M, Howard J (2019) Implementation of interference reflection microscopy for label-free, high-speed imaging of microtubules. J Vis Exp:e59520. https://doi.org/10.3791/59520

  27. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  28. Ruhnow F, Kloβ L, Diez S (2017) Challenges in estimating the motility parameters of single processive motor proteins. Biophys J 113:2433–2443

    Article  CAS  Google Scholar 

  29. Henrichs V, Grycova L, Barinka C et al (2020) Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat Commun 11:3123. https://doi.org/10.1038/s41467-020-16972-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenek Lansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Puttrich, V., Rohlena, J., Braun, M., Lansky, Z. (2022). In Vitro Reconstitution of Molecular Motor-Driven Mitochondrial Transport. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics