Skip to main content

Validation of Diffusion Kurtosis Imaging as an Early-Stage Biomarker of Parkinson’s Disease in Animal Models

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

  • 1285 Accesses

Abstract

Diffusion kurtosis imaging (DKI), which is a mathematical extension of diffusion tensor imaging (DTI), assesses non-Gaussian water diffusion in the brain. DKI proved to be effective in supporting the diagnosis of different neurodegenerative disorders. Its sensitively detects microstructural changes in the brain induced by either protein accumulation, glial cell activation or neurodegeneration as observed in mouse models of Parkinson’s disease. We applied two experimental models of Parkinson’s disease to validate the diagnostic utility of DKI in early and late stage of disease pathology. We present two DKI analysis methods: (1) tract based spatial statistics (TBSS), which is a hypothesis independent data driven approach intended to evaluate white matter changes; and (2) region of interest (ROI) based analysis based on hypothesis of ROIs relevant for Parkinson’s disease, which is specifically used for gray matter changes. The main aim of this chapter is to provide detailed information of how to perform the DKI imaging acquisition and analysis in the mouse brain, which can be, to some extent translated to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nichols E, Szoeke CE, Vollset SE, Abbasi N, Abd-Allah F, Abdela J et al (2019) Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(1):88–106. https://doi.org/10.1016/S1474-4422(18)30403-4

    Article  Google Scholar 

  2. Fereshtehnejad SM, Vosoughi K, Heydarpour P, Sepanlou S, Farzadfar F, Tehrani-Banihashemi A et al (2019) Burden of neurodegenerative diseases in the eastern Mediterranean region, 1990–2016: findings from the global burden of disease study 2016. Eur J Neurol 26(10):1252–1265. https://doi.org/10.1111/ene.13972

    Article  PubMed  Google Scholar 

  3. Gooch CL, Pracht E, Borenstein AR (2017) The burden of neurological disease in the United States: a summary report and call to action. Ann Neurol 81(4):479–484

    Article  Google Scholar 

  4. Stanzione P, Tropepi D (2011) Drugs and clinical trials in neurodegenerative diseases. Ann Ist Super Sanita 47:49–54. https://doi.org/10.1002/ana.24897

    Article  PubMed  Google Scholar 

  5. Sarkar S, Raymick J, Imam S (2016) Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives. Int J Mol Sci 17(6):904. https://doi.org/10.3390/ijms17060904

    Article  CAS  PubMed Central  Google Scholar 

  6. Stoessl AJ (2012) Neuroimaging in the early diagnosis of neurodegenerative disease. Transl Neurodegen 1(1):1–6. (http://www.translationalneurodegeneration.com/content/1/1/5)

    Article  Google Scholar 

  7. Vanhoutte G, Pereson S, Delgado y Palacios R, Guns PJ, Asselbergh B, Veraart J et al (2013) Diffusion kurtosis imaging to detect amyloidosis in an APP/PS1 mouse model for Alzheimer’s disease. Magn Reson Med 69(4):1115–1121. https://doi.org/10.1002/mrm.24680

    Article  CAS  PubMed  Google Scholar 

  8. Praet J, Manyakov NV, Muchene L, Mai Z, Terzopoulos V, de Backer S et al (2018) Diffusion kurtosis imaging allows the early detection and longitudinal follow-up of amyloid-β-induced pathology. Alzheimers Res Ther 10(1):1–16. https://doi.org/10.1186/s13195-017-0329-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Márquez F, Yassa MA (2019) Neuroimaging biomarkers for Alzheimer’s disease. Mol Neurodegen 14(1):21. https://doi.org/10.1186/s13024-019-0325-5

    Article  Google Scholar 

  10. Marsili L, Rizzo G, Colosimo C (2018) Diagnostic criteria for Parkinson’s disease: from James Parkinson to the concept of prodromal disease. Front Neurol 9:156. https://doi.org/10.3389/fneur.2018.00156

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pyatigorskaya N, Gallea C, Garcia-Lorenzo D, Vidailhet M, Lehericy S (2014) A review of the use of magnetic resonance imaging in Parkinson’s disease. Ther Adv Neurol Disord 7(4):206–220. https://doi.org/10.1177/1756285613511507

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pagano G, Niccolini F, Politis M (2016) Imaging in Parkinson’s disease. Clin Med 16(4):371. https://doi.org/10.7861/clinmedicine.16-4-371

    Article  Google Scholar 

  13. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6):548–560. https://doi.org/10.1001/jama.2019.22360

    Article  PubMed  Google Scholar 

  14. Lang AE, Mikulis D (2009) A new sensitive imaging biomarker for Parkinson disease? Neurology 72(16):1374–1375. https://doi.org/10.1212/01.wnl.0000343512.36654.41

    Article  PubMed  Google Scholar 

  15. Frederick J, Meijer BG (2014) Brain MRI in Parkinson’s disease. Front Biosci 6:360–369. https://doi.org/10.2741/E711

    Article  Google Scholar 

  16. Arab A, Wojna-Pelczar A, Khairnar A, Szabó N, Ruda-Kucerova J (2018) Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders. Brain Res Bull 139:91–98. https://doi.org/10.1016/j.brainresbull.2018.01.015

    Article  PubMed  Google Scholar 

  17. Boska MD, Hasan KM, Kibuule D, Banerjee R, McIntyre E, Nelson JA et al (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26(3):590–596. https://doi.org/10.1016/j.nbd.2007.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soria G, Aguilar E, Tudela R, Mullol J, Planas AM, Marin C (2011) In vivo magnetic resonance imaging characterization of bilateral structural changes in experimental Parkinson’s disease: a T2 relaxometry study combined with longitudinal diffusion tensor imaging and manganese-enhanced magnetic resonance imaging in the 6-hydroxydopamine rat model. Eur J Neurosci 33(8):1551–1560. https://doi.org/10.1111/j.1460-9568.2011.07639.x

    Article  PubMed  Google Scholar 

  19. Cochrane CJ, Ebmeier KP (2013) Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 80(9):857–864. https://doi.org/10.1212/WNL.0b013e318284070c

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vaillancourt D, Spraker M, Prodoehl J, Abraham I, Corcos D, Zhou X et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72(16):1378–1384. https://doi.org/10.1212/01.wnl.0000340982.01727.6e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takeda A, Kikuchi A, Matsuzaki-Kobayashi M, Sugeno N, Itoyama Y (2007) Olfactory dysfunction in Parkinson’s disease. J Neurol 254(4):IV2–IV7. https://doi.org/10.1007/s00415-007-4002-1

    Article  Google Scholar 

  22. Rolheiser TM, Fulton HG, Good KP, Fisk JD, McKelvey JR, Scherfler C et al (2011) Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson’s disease. J Neurol 258(7):1254–1260. https://doi.org/10.1007/s00415-011-5915-2

    Article  PubMed  Google Scholar 

  23. Van Camp N, Blockx I, Verhoye M, Casteels C, Coun F, Leemans A et al (2009) Diffusion tensor imaging in a rat model of Parkinson’s disease after lesioning of the Nigrostriatal tract. NMR Biomed 22(7):697–706. https://doi.org/10.1002/nbm.1381

    Article  PubMed  Google Scholar 

  24. Wang J-J, Lin W-Y, Lu C-S, Weng Y-H, Ng S-H, Wang C-H et al (2011) Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261(1):210–217. https://doi.org/10.1148/radiol.11102277

    Article  PubMed  Google Scholar 

  25. Guimarães RP, Campos BM, de Rezende TJ, Piovesana L, Azevedo PC, Amato-Filho AC et al (2018) Is diffusion tensor imaging a good biomarker for early Parkinson’s disease? Front Neurol 9:626. https://doi.org/10.3389/fneur.2018.00626

    Article  PubMed  PubMed Central  Google Scholar 

  26. Atkinson-Clement C, Pinto S, Eusebio A, Coulon O (2017) Diffusion tensor imaging in Parkinson’s disease: review and meta-analysis. Neuroimage Clin 16:98–110. https://doi.org/10.1016/j.nicl.2017.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schwarz ST, Abaei M, Gontu V, Morgan PS, Bajaj N, Auer DP (2013) Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: a region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. NeuroImage Clin 3:481–488. https://doi.org/10.1016/j.nicl.2013.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440. https://doi.org/10.1002/mrm.20508

    Article  PubMed  Google Scholar 

  29. Liu C, Bammer R, Kim D, Moseley ME (2004) Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magn Reson Med 52(6):1388–1396. https://doi.org/10.1002/mrm.20288

    Article  PubMed  Google Scholar 

  30. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23(7):698–710. https://doi.org/10.1002/nbm.1518

    Article  PubMed  PubMed Central  Google Scholar 

  31. Steven AJ, Zhuo J, Melhem ER (2014) Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. Am J Roentgenol 202(1):W26–W33. https://doi.org/10.2214/AJR.13.11365

    Article  Google Scholar 

  32. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6):893–906. https://doi.org/10.1002/mrm.1910360612

    Article  CAS  PubMed  Google Scholar 

  33. Zhuo J, Xu S, Proctor JL, Mullins RJ, Simon JZ, Fiskum G et al (2012) Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. Neuroimage 59(1):467–477. https://doi.org/10.1016/j.neuroimage.2011.07.050

    Article  PubMed  Google Scholar 

  34. Kamagata K, Tomiyama H, Hatano T, Motoi Y, Abe O, Shimoji K et al (2014) A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging. Neuroradiology 56(3):251–258. https://doi.org/10.1007/s00234-014-1327-1

    Article  PubMed  Google Scholar 

  35. Zhang G, Zhang Y, Zhang C, Wang Y, Ma G, Nie K et al (2015) Diffusion kurtosis imaging of substantia nigra is a sensitive method for early diagnosis and disease evaluation in Parkinson’s disease. Parkinsons Dis 2015. https://doi.org/10.1155/2015/207624

  36. Goetz CG, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stebbins GT et al (2007) Movement Disorder Society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov Disord 22(1):41–47. https://doi.org/10.1002/mds.21198

    Article  PubMed  Google Scholar 

  37. Surova Y, Nilsson M, Lampinen B, Lätt J, Hall S, Widner H et al (2018) Alteration of putaminal fractional anisotropy in Parkinson’s disease: a longitudinal diffusion kurtosis imaging study. Neuroradiology 60(3):247–254. https://doi.org/10.1007/s00234-017-1971-3

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chesselet M-F, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR (2012) A progressive mouse model of Parkinson’s disease: the Thy1-aSyn (“line 61”) mice. Neurotherapeutics 9(2):297–314. https://doi.org/10.1007/s13311-012-0104-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gubellini P, Kachidian P (2015) Animal models of Parkinson's disease: an updated overview. Rev Neurol 171(11):750–761. https://doi.org/10.1016/j.neurol.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  40. Olanow CW, Kieburtz K, Schapira AH (2008) Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann Neurol 64(S2):S101–SS10. https://doi.org/10.1002/ana.21461

    Article  CAS  PubMed  Google Scholar 

  41. Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R (2014) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 39(5):1066–1080. https://doi.org/10.1038/npp.2013.307

    Article  CAS  PubMed  Google Scholar 

  42. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM et al (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2(6):699–703. https://doi.org/10.1038/nm0696-699

    Article  CAS  PubMed  Google Scholar 

  43. Granado N, Ares-Santos S, O’Shea E, Vicario-Abejón C, Colado MI, Moratalla R (2010) Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration. Neurotox Res 18(1):48–58. https://doi.org/10.1007/s12640-009-9106-1

    Article  PubMed  Google Scholar 

  44. Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF et al (2017) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: main mechanisms. Prog Neurobiol 155:149–170. https://doi.org/10.1016/j.pneurobio.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  45. Arab A, Ruda-Kucerova J, Minsterova A, Drazanova E, Szabó N, Starcuk Z et al (2019) Diffusion kurtosis imaging detects microstructural changes in a methamphetamine-induced mouse model of Parkinson’s disease. Neurotox Res 36(4):724–735. https://doi.org/10.1007/s12640-019-00068-0

    Article  CAS  PubMed  Google Scholar 

  46. Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R et al (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5(1):e8762. https://doi.org/10.1371/journal.pone.0008762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paxinos G, Franklin KB (2019) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Academic, San Diego. https://www.elsevier.com/books/paxinos-and-franklins-the-mouse-brain-in-stereotaxic-coordinates-compact/franklin/978-0-12-816159-3

    Google Scholar 

  48. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–SS19. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  49. Drazanova E, Ruda-Kucerova J, Kratka L, Horska K, Demlova R, Starcuk Z Jr et al (2018) Poly (I: C) model of schizophrenia in rats induces sex-dependent functional brain changes detected by MRI that are not reversed by aripiprazole treatment. Brain Res Bull 137:146–155. https://doi.org/10.1016/j.brainresbull.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  50. Luca C, Salvatore F, Vincenzo DP, Giovanni C, Attilio ILM (2018) Anesthesia protocols in laboratory animals used for scientific purposes. Acta Bio Med Atenei Parmensis 89(3):337. https://doi.org/10.23750/abm.v89i3.5824

    Article  CAS  Google Scholar 

  51. Young I, Hand J, Oatridge A, Prior M, Forse G (1994) Further observations on the measurement of tissue T1 to monitor temperature in vivo by MRI. Magn Reson Med 31(3):342–345. https://doi.org/10.1002/mrm.1910310317

    Article  CAS  PubMed  Google Scholar 

  52. Young IR, Hand JW, Oatridge A, Prior MV (1994) Modeling and observation of temperature changes in vivo using MRI. Magn Reson Med 32(3):358–369. https://doi.org/10.1002/mrm.1910320311

    Article  CAS  PubMed  Google Scholar 

  53. Lin W, Venkatesan R, Gurleyik K, He YY, Powers WJ, Hsu CY (2000) An absolute measurement of brain water content using magnetic resonance imaging in two focal cerebral ischemic rat models. J Cereb Blood Flow Metab 20(1):37–44. https://doi.org/10.1097/00004647-200001000-00007

    Article  CAS  PubMed  Google Scholar 

  54. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156. https://doi.org/10.1016/S1361-8415(01)00036-6

    Article  CAS  PubMed  Google Scholar 

  55. Leemans A, Jeurissen B, Sijbers J, Jones D (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc Intl Soc Mag Reson Med. https://cds.ismrm.org/protected/09MProceedings/files/03537.pdf

  56. Khairnar A, Latta P, Drazanova E, Ruda-Kucerova J, Szabó N, Arab A et al (2015) Diffusion kurtosis imaging detects microstructural alterations in brain of α-Synuclein overexpressing transgenic mouse model of Parkinson’s disease: a pilot study. Neurotox Res 28(4):281–289. https://doi.org/10.1007/s12640-015-9537-9

    Article  CAS  PubMed  Google Scholar 

  57. Khairnar A, Ruda-Kucerova J, Szabó N, Drazanova E, Arab A, Hutter-Paier B et al (2017) Early and progressive microstructural brain changes in mice overexpressing human α-Synuclein detected by diffusion kurtosis imaging. Brain Behav Immun 61:197–208. https://doi.org/10.1016/j.bbi.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  58. Khairnar A, Ruda-Kucerova J, Drazanova E, Szabó N, Latta P, Arab A et al (2016) Late-stage α-synuclein accumulation in TNWT-61 mouse model of Parkinson’s disease detected by diffusion kurtosis imaging. J Neurochem 136(6):1259–1269. https://doi.org/10.1111/jnc.13500

    Article  CAS  PubMed  Google Scholar 

  59. Giannelli M, Toschi N, Passamonti L, Mascalchi M, Diciotti S, Tessa C (2012) Diffusion kurtosis and diffusion-tensor MR imaging in Parkinson disease. Radiology 265(2):645–646. https://doi.org/10.1148/radiol.12121036

    Article  PubMed  Google Scholar 

  60. Delenclos M, Carrascal L, Jensen K, Romero-Ramos M (2014) Immunolocalization of human alpha-synuclein in the Thy1-aSyn (“line 61”) transgenic mouse line. Neuroscience 277:647–664

    Article  CAS  Google Scholar 

  61. Granado N, Ares-Santos S, Moratalla R (2013) Methamphetamine and Parkinson’s disease. Parkinson Dis 2013:30805. https://doi.org/10.1016/j.neuroscience.2014.07.042

    Article  CAS  Google Scholar 

  62. Khan AR, Chuhutin A, Wiborg O, Kroenke CD, Nyengaard JR, Hansen B et al (2016) Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain. Neuroimage 142:421–430. https://doi.org/10.1016/j.neuroimage.2016.07.001

    Article  PubMed  Google Scholar 

  63. Fornai F, Lenzi P, Ferrucci M, Lazzeri G, Di Poggio AB, Natale G et al (2005) Occurrence of neuronal inclusions combined with increased nigral expression of α-synuclein within dopaminergic neurons following treatment with amphetamine derivatives in mice. Brain Res Bull 65(5):405–413. https://doi.org/10.1016/j.brainresbull.2005.02.022

    Article  CAS  PubMed  Google Scholar 

  64. Watson MB, Richter F, Lee SK, Gabby L, Wu J, Masliah E et al (2012) Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 237(2):318–334. https://doi.org/10.1016/j.expneurol.2012.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Neumann M, Müller V, Kretzschmar HA, Haass C, Kahle PJ (2004) Regional distribution of proteinase K-resistant α-synuclein correlates with Lewy body disease stage. J Neuropathol Exp Neurol 63(12):1225–1235. https://doi.org/10.1093/jnen/63.12.1225

    Article  CAS  PubMed  Google Scholar 

  66. Hui ES, Du F, Huang S, Shen Q, Duong TQ (2012) Spatiotemporal dynamics of diffusional kurtosis, mean diffusivity and perfusion changes in experimental stroke. Brain Res 1451:100–109. https://doi.org/10.1016/j.brainres.2012.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Falangola MF, Jensen JH, Tabesh A, Hu C, Deardorff RL, Babb JS et al (2013) Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer’s disease. Magn Reson Imaging 31(6):840–846. https://doi.org/10.1016/j.mri.2013.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rudrapatna SU, Wieloch T, Beirup K, Ruscher K, Mol W, Yanev P et al (2014) Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology. Neuroimage 97:363–373. https://doi.org/10.1016/j.neuroimage.2014.04.013

    Article  Google Scholar 

  69. Guglielmetti C, Veraart J, Roelant E, Mai Z, Daans J, Van Audekerke J et al (2016) Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination. Neuroimage 125:363–377. https://doi.org/10.1016/j.neuroimage.2015.10.052

    Article  CAS  PubMed  Google Scholar 

  70. Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83. https://doi.org/10.1016/j.expneurol.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  71. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155. https://doi.org/10.1002/hbm.10062

    Article  PubMed  PubMed Central  Google Scholar 

  72. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  73. Sierra A, Laitinen T, Lehtimäki K, Rieppo L, Pitkänen A, Gröhn O (2011) Diffusion tensor MRI with tract-based spatial statistics and histology reveals undiscovered lesioned areas in kainate model of epilepsy in rat. Brain Struct Funct 216(2):123–135. https://doi.org/10.1007/s00429-010-0299-0

    Article  PubMed  Google Scholar 

  74. Sakayori N, Kato S, Sugawara M, Setogawa S, Fukushima H, Ishikawa R et al (2019) Motor skills mediated through cerebellothalamic tracts projecting to the central lateral nucleus. Mol Brain 12(1):1–12. https://doi.org/10.1186/s13041-019-0431-x

    Article  Google Scholar 

  75. Pifl C, Kish SJ, Hornykiewicz O (2012) Thalamic noradrenaline in Parkinson’s disease: deficits suggest role in motor and non-motor symptoms. Mov Disord 27(13):1618–1624. https://doi.org/10.1002/mds.25109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kamagata K, Hatano T, Okuzumi A, Motoi Y, Abe O, Shimoji K et al (2016) Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease. Eur Radiol 26(8):2567–2577. https://doi.org/10.1007/s00330-015-4066-8

    Article  PubMed  Google Scholar 

  77. Zhang G, Zhang C, Wang Y, Wang L, Zhang Y, Xie H et al (2019) Is hyperhomocysteinemia associated with the structural changes of the substantia nigra in Parkinson’s disease? A two-year follow-up study. Parkinsonism Relat Disord 60:46–50. https://doi.org/10.1016/j.parkreldis.2018.10.008

    Article  PubMed  Google Scholar 

  78. Zhang G, Zhang C, Zhang Y, Wang Y, Nie K, Zhang B et al (2017) The effects of striatal silent lacunar infarction on the substantia nigra and movement disorders in Parkinson’s disease: a follow-up study. Parkinsonism Relat Disord 43:33–37. https://doi.org/10.1016/j.parkreldis.2017.06.020

    Article  PubMed  Google Scholar 

  79. Guan J, Ma X, Geng Y, Qi D, Shen Y, Shen Z et al (2019) Diffusion kurtosis imaging for detection of early brain changes in Parkinson’s disease. Front Neurol 10. https://doi.org/10.3389/fneur.2019.01285

  80. Kamagata K, Tomiyama H, Motoi Y, Kano M, Abe O, Ito K et al (2013) Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: comparison with conventional diffusion tensor imaging. Magn Reson Imaging 31(9):1501–1506. https://doi.org/10.1016/j.mri.2013.06.009

    Article  PubMed  Google Scholar 

  81. Games D, Seubert P, Rockenstein E, Patrick C, Trejo M, Ubhi K et al (2013) Axonopathy in an α-Synuclein transgenic model of Lewy body disease is associated with extensive accumulation of C-terminal–truncated α-Synuclein. Am J Pathol 182(3):940–953. https://doi.org/10.1016/j.ajpath.2012.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Surova Y, Lampinen B, Nilsson M, Lätt J, Hall S, Widner H et al (2016) Alterations of diffusion kurtosis and neurite density measures in deep grey matter and white matter in Parkinson’s disease. PLoS One 11(6):e0157755. https://doi.org/10.1371/journal.pone.0157755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bingbing G, Yujing Z, Yanwei M, Chunbo D, Weiwei W, Shiyun T et al (2020) Diffusion kurtosis imaging of microstructural changes in gray matter nucleus in Parkinson disease. Front Neurol 11:252. https://doi.org/10.3389/fneur.2020.00252

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was performed at Masaryk University as part of the project “Pharmacological research in the field of pharmacokinetics, neuropsychopharmacology, and oncology” number MUNI/A/1249/2020 with the support of the Specific University Research Grant, as provided by the Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR) in the year 2021.

This supplement was supported by the seed fund of National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India. Amit Khairnar gratefully acknowledges the support of Ramalingaswami Fellowship from Department of Biotechology, India. Eva Drazanova was supported by the grant LM2015062 and CZ.02.1.01/0.0/0.0/16_013/0001775 “National Infrastructure for Biological and Medical Imaging (Czech-BioImaging).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Khairnar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khairnar, A., Drazanova, E., Szabo, N., Ruda-Kucerova, J. (2022). Validation of Diffusion Kurtosis Imaging as an Early-Stage Biomarker of Parkinson’s Disease in Animal Models. In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics