Skip to main content

Stabilization of Proteins by Freeze-Drying in the Presence of Trehalose: A Case Study of Tubulin

  • Protocol
  • First Online:
Book cover Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2178))

Abstract

Microtubules, polymers of the heterodimeric protein αβ-tubulin, are indispensable for many cellular activities such as maintenance of cell shape, division, migration, and ordered vesicle transport. In vitro assays to study microtubule functions and their regulation by associated proteins require the availability of assembly-competent purified tubulin. However, tubulin is a thermolabile protein that rapidly converts into a nonpolymerizing state. For this reason, it is usually stored at −80 °C or liquid nitrogen to preserve its conformation and polymerization properties. In this chapter, we describe a method for freeze-drying of assembly-competent tubulin in the presence of nonreducing sugar trehalose, and methods enabling the evaluation of tubulin functions in rehydrated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matejtschuk P (2007) Lyophilization of proteins. Methods Mol Biol 368:59–72

    Article  CAS  Google Scholar 

  2. Adams G (2007) The principles of freeze-drying. Methods Mol Biol 368:15–38

    Article  CAS  Google Scholar 

  3. Crowe JH, Carpenter JF, Crowe LM, Anchordoguy TJ (1990) Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27:219–231

    Article  CAS  Google Scholar 

  4. Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F (2001) The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43:89–105

    Article  CAS  Google Scholar 

  5. Carpenter JF, Crowe JH (1988) Modes of stabilization of a protein by organic solutes during desiccation. Cryobiology 25:459–470

    Article  CAS  Google Scholar 

  6. Israeli E, Shaffer BT, Lighthart B (1993) Protection of freeze-dried Escherichia coli by trehalose upon exposure to environmental conditions. Cryobiology 30:519–523

    Article  CAS  Google Scholar 

  7. Roser B (1991) Trehalose drying: a novel replacement for freeze-drying. Biopharm 5:47–52

    Google Scholar 

  8. Crowe JH (2007) Trehalose as a "chemical chaperone": fact and fantasy. Adv Exp Med Biol 594:143–158

    Article  Google Scholar 

  9. Cordone L, Cottone G, Cupane A, Emanuele A, Giuffrida S, Levantino M (2015) Proteins in saccharides matrices and the trehalose pecularity: biochemical and biopysical properties. Curr Org Chem 19:1684–1706

    Article  CAS  Google Scholar 

  10. Ohtake S, Wang YJ (2011) Trehalose: current use and future applications. J Pharm Sci 100:2020–2053

    Article  CAS  Google Scholar 

  11. Dráberová E, Sulimenko V, Sulimenko T, Böhm KJ, Dráber P (2010) Recovery of tubulin functions after freeze-drying in the presence of trehalose. Anal Biochem 397:67–72

    Article  CAS  Google Scholar 

  12. Dráber P, Dráberová E (2012) Microtubules. In: Kavallaris M (ed) Cytoskeleton and human disease. Humana Press, New York: NY, pp 29–54

    Chapter  Google Scholar 

  13. Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A 70:765–768

    Article  CAS  Google Scholar 

  14. Soifer D, Laszlo AH, Scotto JM (1972) Enzymatic activity in tubulin preparations. I. Intrinsic protein kinase activity in lyophilized preparations of tubulin from porcine brain. Biochim Biophys Acta 271:182–192

    Article  CAS  Google Scholar 

  15. Mandelkow EM, Herrman M, Ruhl V (1985) Tubulin domains probed by limited proteolysis and subunit-specific antibodies. J Mol Biol 185:311–327

    Article  CAS  Google Scholar 

  16. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72:1858–1868

    Article  CAS  Google Scholar 

  17. Fellous A, Francon J, Lennon AM, Nunez J (1977) Microtubule assembly in vitro—purification of assembly-promoting factors. Eur J Biochem 78:167–174

    Article  CAS  Google Scholar 

  18. Nováková M, Dráberová E, Schürmann W, Czihak G, Viklický V, Dráber P (1996) γ-tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil Cytoskeleton 33:38–51

    Article  Google Scholar 

  19. Viklický V, Dráber P, Hašek J, Bártek J (1982) Production and characterization of a monoclonal antitubulin antibody. Cell Biol Int Rep 6:725–731

    Article  Google Scholar 

  20. Dráberová E, Stegurová L, Sulimenko V, Hájková Z, Dráber P, Dráber P (2013) Quantification of alpha-tubulin isotypes by sandwich ELISA with signal amplification through biotinyl-tyramide or immuno-PCR. J Immunol Methods 395:63–70

    Article  CAS  Google Scholar 

  21. Waterman-Storer CM (2001) Microtubule/organelle motility assays. Curr Protoc Cell Biol. Chapter 13:Unit 13.1

    Google Scholar 

  22. Gaskin F, Cantor CR, Shelanski ML (1974) Turbidimetric studies of in vitro assembly and disassembly of porcine neurotubules. J Mol Biol 89:737–755

    Article  CAS  Google Scholar 

  23. Evans L, Mitchison T, Kirschner M (1985) Influence of the centrosome on the structure of nucleated microtubules. J Cell Biol 100:1185–1191

    Article  CAS  Google Scholar 

  24. Brinkley BR, Cox SM, Pepper DA, Wible L, Brenner SL, Pardue RL (1981) Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. J Cell Biol 90:554–562

    Article  CAS  Google Scholar 

  25. Correia JJ, Williams RC Jr (1985) Characterization of oligomers of tubulin by two-dimensional native electrophoresis. Arch Biochem Biophys 239:120–129

    Article  CAS  Google Scholar 

  26. Sulimenko V, Sulimenko T, Poznanovic S, Nechiporuk-Zloy V, Böhm JK, Macurek L, Unger E, Dráber P (2002) Association of brain g-tubulins with ab-tubulin dimers. Biochem J 365:889–895

    Article  CAS  Google Scholar 

  27. Chumová J, Trögelová L, Kourová H, Volc J, Sulimenko V, Halada P, Kučera O, Benada O, Kuchařová A, Klebanovych A, Dráber P, Daniel G, Binarová P (2018) γ-Tubulin has a conserved intrinsic property of self-polymerization into double stranded filaments and fibrillar networks. Biochim Biophys Acta, Mol Cell Res 1865:734–748

    Article  CAS  Google Scholar 

  28. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  29. Dráber P, Lagunowich LA, Dráberová E, Viklický V, Damjanov I (1988) Heterogeneity of tubulin epitopes in mouse fetal tissues. Histochemistry 89:485–492

    Article  Google Scholar 

  30. Blume Y, Yemets A, Sulimenko V, Sulimenko T, Chan J, Lloyd C, Dráber P (2008) Tyrosine phosphorylation of plant tubulin. Planta 229:143–150

    Article  CAS  Google Scholar 

  31. Kirchner K, Mandelkow EM (1985) Tubulin domains responsible for assembly of dimers and protofilaments. EMBO J 4:2397–2402

    Article  CAS  Google Scholar 

  32. Montecinos-Franjola F, Schuck P, Sackett DL (2016) Tubulin dimer reversible dissociation: affinity, kinetics, and demonstration of a stable monomer. J Biol Chem 291:9281–9294

    Article  CAS  Google Scholar 

  33. Dráber P, Dráberová E, Linhartová I, Viklický V (1989) Differences in the exposure of C- and N-terminal tubulin domains in cytoplasmic microtubules detected with domain-specific monoclonal antibodies. J Cell Sci 92:519–528

    Google Scholar 

  34. Dráber P, Dráberová E, Nováková M (1995) Stability of monoclonal IgM antibodies freeze-dried in the presence of trehalose. J Immunol Methods 181:37–43

    Article  Google Scholar 

  35. Franze S, Selmin F, Samaritani E, Minghetti P, Cilurzo F (2018) Lyophilization of liposomal formulations: still necessary, still challenging. Pharmaceutics 10:e139

    Article  CAS  Google Scholar 

  36. Zhang M, Oldenhof H, Sydykov B, Bigalk J, Sieme H, Wolkers WF (2017) Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci Rep 7:e6198

    Article  CAS  Google Scholar 

  37. Oldenhof H, Zhang M, Narten K, Bigalk J, Sydykov B, Wolkers WF, Sieme H (2017) Freezing-induced uptake of disaccharides for preservation of chromatin in freeze-dried stallion sperm during accelerated aging. Biol Reprod 97:892–901

    Article  Google Scholar 

  38. Dráberová E, Dráber P (1993) A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J Cell Sci 106:1263–1273

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants 18-27197S and 19-20716S from the Czech Science Foundation, Grant LTAUSA17052 from Ministry of Education, Youth, and Sports of the Czech Republic, Project NAS-17-11 from Academy of Sciences of the Czech Republic, and by the Institutional Research Support (RVO 68378050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Dráber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dráber, P., Sulimenko, V., Sulimenko, T., Dráberová, E. (2021). Stabilization of Proteins by Freeze-Drying in the Presence of Trehalose: A Case Study of Tubulin. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics