Skip to main content

Controlling Cell Membrane Potential with Static Nonuniform Magnetic Fields

  • Chapter
  • First Online:
Book cover Biological Effects of Static Magnetic Fields

Abstract

The coordinated activity of a myriad of ion channels in a cell is a spectacular biological and physical phenomenon. Understanding mechanisms governing the ion channel gating and setting membrane potentials is key to developing targeted therapeutic strategies using non-contact magnetic stimulations. In this study, we demonstrate theoretically that ion channel activity can be controlled by a static gradient magnetic field. The analysis revealed that specific ion membrane channels can be turned off and on by remotely applying a high-gradient magnetic field, thus modulating the cell membrane potential. The suggested model and mechanisms provide a general framework for identifying possible hidden mechanisms of biomagnetic effects associated with modulation of ion channel activity by high-gradient static magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Kadir L, Stacey M, Barrett-Jolley R (2018) Emerging roles of the membrane potential: action beyond the action potential. Front Physiol 9:1661

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbic M (2019) Possible magneto-mechanical and magneto-thermal mechanisms of ion channel activation in magnetogenetics. elife 8:e45807

    Article  PubMed  PubMed Central  Google Scholar 

  • Binggeli R, Weinstein RC (1986) Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol 123(4):377–401

    Article  CAS  PubMed  Google Scholar 

  • Binggeli R, Weinstein RC, Stevenson D (1994) Calcium-ion and the membrane-potential of tumor-cells. Cancer Biochem Biophys 14(3):201–210

    CAS  PubMed  Google Scholar 

  • Bund A, Kuehnlein HH (2005) Role of magnetic forces in electrochemical reactions at microstructures. J Phys Chem B 109(42):19845–19850

    Article  CAS  PubMed  Google Scholar 

  • Cone CD (1971) Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J Theor Biol 30(1):151–181

    Article  CAS  PubMed  Google Scholar 

  • Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39(6):3607–3612

    Article  Google Scholar 

  • de Vries AHB, Krenn BE, van Driel R, Kanger JS (2005) Micro magnetic tweezers for nanomanipulation inside live cells. Biophys J 88(3):2137–2144

    Article  PubMed  Google Scholar 

  • Delorme N, Bardeau JF, Carrière D, Dubois M, Gourbil A, Moehwald H, Zemb T, Fery A (2007) Experimental evidence of the electrostatic contribution to the bending rigidity of charged membranes. J Phys Chem B 11:2503–2505

    Article  Google Scholar 

  • Dempsey NM, Le Roy D, Marelli-Mathevon H, Shaw G, Dias A, Kramer RBG, Cuong LV, Kustov M, Zanini LF, Villard C, Hasselbach K, Tomba C, Dumas-Bouchiat F (2014) Micro-magnetic imprinting of high field gradient magnetic flux sources. Appl Phys Lett 104(26):262401

    Article  Google Scholar 

  • Denegre JM, Valles JM, Lin K, Jordan WB, Mowry KL (1998) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci USA 95(25):14729–14732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3(3):139–143

    Article  CAS  PubMed  Google Scholar 

  • Dumas-Bouchiat F, Zanini LF, Kustov M, Dempsey NM, Grechishkin R, Hasselbach K, Orlianges JC, Champeaux C, Catherinot A, Givord D (2010) Thermomagnetically patterned micromagnets. Appl Phys Lett 96(10):102511

    Article  Google Scholar 

  • Dunne P, Mazza L, Coey JMD (2011) Magnetic structuring of electrodeposits. Phys Rev Lett 107(1):024501

    Article  PubMed  Google Scholar 

  • Goldman DE (1943) Potential, impedance, and rectification in membranes. J Gen Physiol 27(1):37–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorobets S, Gorobets O, Gorobets Y, Bulaievska M (2022) Chain-like structures of biogenic and nonbiogenic magnetic nanoparticles in vascular tissues. Bioelectromagnetics 43(2):119–143

    Article  CAS  PubMed  Google Scholar 

  • Hinds G, Coey JMD, Lyons MEG (2001) Influence of magnetic forces on electrochemical mass transport. Electrochem Commun 3(5):215–218

    Article  CAS  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108(1):37–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert A, Schäfer R (1998) Magnetic domains: the analysis of magnetic microstructures. Springer, Berlin

    Google Scholar 

  • Joseph RI, Schloman E (1965) Demagnetizing field in nonellipsoidal bodies. J Appl Phys 36(5):1579

    Article  Google Scholar 

  • Kinouchi Y, Tanimoto S, Ushita T, Sato K, Yamaguchi H, Miyamoto H (1988) Effects of static magnetic fields on diffusion in solutions. Bioelectromagnetics 9(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Landau LD, Pitaevskii LP, Lifshitz EM (1995) Physical kinetics, vol 10. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Leventis N, Gao X (2002) Nd–Fe–B permanent magnet electrodes. Theoretical evaluation and experimental demonstration of the paramagnetic body forces. J Am Chem Soc 124(6):1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Levin M (2014) Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell 25(24):3835–3850

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin M (2020) The biophysics of regenerative repair suggests new perspectives on biological causation. BioEssays 42(2):1900146

    Article  Google Scholar 

  • Levin M, Stevenson CG (2012) Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Ann Rev Biomed Eng 14(14):295–323

    Article  CAS  Google Scholar 

  • Lunov O, Zablotskii V, Syrovets T, Röcker C, Tron K, Nienhaus GU, Simmet T (2011) Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 32(2):547–555

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA (2014) Chapter 12—Membrane potential and action potential. In: Byrne JH, Heidelberger R, Waxham MN (eds) From molecules to networks, 3rd edn. Academic Press, Boston, pp 351–376

    Chapter  Google Scholar 

  • Osman O, Zanini LF, Frenea-Robin M, Dumas-Bouchiat F, Dempsey NM, Reyne G, Buret F, Haddour N (2012) Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources. Biomed Microdevices 14(5):947–954

    Article  CAS  PubMed  Google Scholar 

  • Osman O, Toru S, Dumas-Bouchiat F, Dempsey NM, Haddour N, Zanini LF, Buret F, Reyne G, Frenea-Robin M (2013) Microfluidic immunomagnetic cell separation using integrated permanent micromagnets. Biomicrofluidics 7(5):054115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves D, Ursell T, Sens P, Kondev J, Phillips R (2008) Membrane mechanics as a probe of ion-channel gating mechanisms. Phys Rev E 78(4):041901

    Article  Google Scholar 

  • Rubio Ayala M, Syrovets T, Hafner S, Zablotskii V, Dejneka A, Simmet T (2018) Spatiotemporal magnetic fields enhance cytosolic Ca2+ levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells. Biomaterials 163:174–184

    Article  CAS  PubMed  Google Scholar 

  • Sachs F (1994) Modeling mechanical-electrical transduction in the heart. In: Cell mechanics and cellular engineering. Springer, New York, pp 308–328

    Chapter  Google Scholar 

  • Samofalov VN, Belozorov DP, Ravlik AG (2013) Strong stray fields in systems of giant magnetic anisotropy magnets. Physics-Uspekhi 56(3):269–288

    Article  CAS  Google Scholar 

  • Svendsen JA, Waskaas M (2020) Mathematical modelling of mass transfer of paramagnetic ions through an inert membrane by the transient magnetic concentration gradient force. Phys Fluids 32(1):013606

    Article  CAS  Google Scholar 

  • Thiaville A, Tomáš D, Miltat J (1998) On corner singularities in micromagnetics. Phys Status Solidi A 170(1):125–135

    Article  CAS  Google Scholar 

  • Waskaas M (1993) Short-term effects of magnetic fields on diffusion in stirred and unstirred paramagnetic solutions. J Phys Chem 97(24):6470–6476

    Article  CAS  Google Scholar 

  • Wosik J, Chen W, Qin K, Ghobrial RM, Kubiak JZ, Kloc M (2018) Magnetic field changes macrophage phenotype. Biophys J 114(8):2001–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Goyal R, Grandl J (2016) Localized force application reveals mechanically sensitive domains of Piezo1. Nat Commun 7:12939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Brackenbury W (2013) Membrane potential and cancer progression. Front Phys 4:185

    Article  CAS  Google Scholar 

  • Yang X, Li Z, Polyakova T, Dejneka A, Zablotskii V, Zhang X (2020) Effect of static magnetic field on DNA synthesis: the interplay between DNA chirality and magnetic field left-right asymmetry. FASEB Bioadv 2:254–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabel M, Koller BS, Sachs F, Franz MR (1996) Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc Res 32(1):120–130

    Article  CAS  PubMed  Google Scholar 

  • Zablotskii V, Pastor JM, Larumbe S, Perez-Landazabal JI, Recarte V, Gomez-Polo C (2010) High-field gradient permanent micromagnets for targeted drug delivery with magnetic nanoparticles. In: 8th International conference on the scientific and clinical applications of magnetic carriers, vol 1311. American Institute of Physics, College Park, pp 152–157

    Google Scholar 

  • Zablotskii V, Dejneka A, Kubinova S, Le-Roy D, Dumas-Bouchiat F, Givord D, Dempsey NM, Sykova E (2013) Life on magnets: stem cell networking on micro-magnet arrays. PLoS One 8(8):e70416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zablotskii V, Lunov O, Novotna B, Churpita O, Trosan P, Holan V, Sykova E, Dejneka A, Kubinova S (2014a) Down-regulation of adipogenesis of mesenchymal stem cells by oscillating high-gradient magnetic fields and mechanical vibration. Appl Phys Lett 105(10):103702

    Article  Google Scholar 

  • Zablotskii V, Syrovets T, Schmidt ZW, Dejneka A, Simmet T (2014b) Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies. Biomaterials 35(10):3164–3171

    Article  CAS  PubMed  Google Scholar 

  • Zablotskii V, Lunov O, Kubinova S, Polyakova T, Sykova E, Dejneka A (2016a) Effects of high-gradient magnetic fields on living cell machinery. J Phys D Appl Phys 49(49):493003

    Article  Google Scholar 

  • Zablotskii V, Polyakova T, Lunov O, Dejneka A (2016b) How a high-gradient magnetic field could affect cell life. Sci Rep 6:37407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zablotskii V, Polyakova T, Dejneka A (2018) Cells in the non-uniform magnetic world: how cells respond to high-gradient magnetic fields. BioEssays 40(8):1800017

    Article  Google Scholar 

  • Zablotskii V, Polyakova T, Dejneka A (2021) Modulation of the cell membrane potential and intracellular protein transport by high magnetic fields. Bioelectromagnetics 42(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Zanini LF, Dempsey NM, Givord D, Reyne G, Dumas-Bouchiat F (2011) Autonomous micro-magnet based systems for highly efficient magnetic separation. Appl Phys Lett 99(23):232504

    Article  Google Scholar 

  • Zanini LF, Osman O, Frenea-Robin M, Haddour N, Dempsey NM, Reyne G, Dumas-Bouchiat F (2012) Micromagnet structures for magnetic positioning and alignment. J Appl Phys 111(7):07b312

    Article  Google Scholar 

  • Zhang L, Hou Y, Li Z, Ji X, Wang Z, Wang H, Tian X, Yu F, Yang Z, Pi L, Mitchison TJ, Lu Q, Zhang X (2017) 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells. elife 6:e22911

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii Zablotskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zablotskii, V., Polyakova, T., Dejneka, A. (2023). Controlling Cell Membrane Potential with Static Nonuniform Magnetic Fields. In: Zhang, X. (eds) Biological Effects of Static Magnetic Fields. Springer, Singapore. https://doi.org/10.1007/978-981-19-8869-1_5

Download citation

Publish with us

Policies and ethics