Skip to main content

Viroids: Non-coding Circular RNAs Are Tiny Pathogens Provoking a Broad Response in Host Plants

  • Chapter
  • First Online:
RNA Structure and Function

Part of the book series: RNA Technologies ((RNATECHN,volume 14))

  • 608 Accesses

Abstract

More than 50 years ago, viroids were firstly described as the smallest RNA molecules capable to infect certain plants and to autonomously self-replicate in host plants. Viroids are covalently closed circular single-stranded RNAs that are non-coding and depend for most of their infection cycle on host proteins. Today, viroids are subdivided into the two families Avsunviroidae and Pospiviroidae. Members of Avsunviroidae replicate in the chloroplast and have a highly bifurcated structure including hammerhead ribozymes, which cleave oligomeric replication intermediates into monomers and ligate them to mature circles. Members of Pospiviroidae accumulate in the nucleus, have a rod-like structure and depend on host proteins for cleavage and ligation. We will describe our present knowledge on sequence and structural elements of viroids in connection to their replication and trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraitiene A, Zhao Y, Hammond R (2008) Nuclear targeting by fragmentation of the potato spindle tuber viroid genome. Biochem Biophys Res Commun 368:470–475

    Article  CAS  PubMed  Google Scholar 

  • Addo-Quaye C, Miller W, Axtell M (2008) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Adkar-Purushothama C, Perreault J (2020) Impact of nucleic acid sequencing on viroid biology. Int J Mol Sci 21:5532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J (2013) Microgenomics: genome-scale, cell-specific monitoring of multiple gene regulation tiers. Annu Rev Plant Biol 64:293–325

    Article  CAS  PubMed  Google Scholar 

  • Bojić T, Beeharry Y, Zhang D et al (2012) Tomato RNA polymerase II interacts with the rod-like conformation of the left terminal domain of the potato spindle tuber viroid positive RNA genome. J Gen Virol 93:1591–1600

    Article  PubMed  Google Scholar 

  • Bussière F, Ouellet J, Côté F et al (2000) Mapping in solution shows the peach latent mosaic viroid to possess a new pseudoknot in a complex, branched secondary structure. J Virol 74:2647–2654

    Article  PubMed  PubMed Central  Google Scholar 

  • Daròs J, Flores R (2002) A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. EMBO J 21:749–759

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Serio F, Owens R, Li SF et al (2020) Viroids. https://ictv.global/report_9th/subviral/Viroids, visited on November 2022

  • Di Serio F, Owens R, Navarro B et al (2022) Role of RNA silencing in plant-viroid interactions and in viroid pathogenesis. Virus Res 323:198964

    Article  PubMed  PubMed Central  Google Scholar 

  • Diener T (2003) Discovering viroids—a personal perspective. Nat Rev Microbiol 1:75–80

    Article  CAS  PubMed  Google Scholar 

  • Dissanayaka Mudiyanselage S, Wang Y (2020) Evidence supporting that RNA polymerase II catalyzes de novo transcription using potato spindle tuber viroid circular RNA templates. Viruses 12:371

    Article  PubMed  PubMed Central  Google Scholar 

  • Dissanayaka Mudiyanselage S, Ma J, Pechan T et al (2022) A remodeled RNA polymerase II complex catalyzing viroid RNA-templated transcription. PLoS Pathog 18:e1010850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubé A, Baumstark T, Bisaillon M et al (2010) The RNA strands of the plus and minus polarities of peach latent mosaic viroid fold into different structures. RNA 16:463–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubé A, Bolduc F, Bisaillon M et al (2011) Mapping studies of the Peach latent mosaic viroid reveal novel structural features. Mol Plant Pathol 12:688–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufour D, De la Peña M, Gago S et al (2009) Structure-function analysis of the ribozymes of chrysanthemum chlorotic mottle viroid: a loop-loop interaction motif conserved in most natural hammerheads. Nucleic Acids Res 37:368–381

    Article  CAS  PubMed  Google Scholar 

  • Eiras M, Kitajima E, Flores R et al (2007) Existence in vivo of the loop E motif in potato spindle tuber viroid RNA. Arch Virol 152:1389–1393

    Article  CAS  PubMed  Google Scholar 

  • Eiras M, Nohales M, Kitajima E et al (2010) Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Arch Virol 156:529–533

    Article  PubMed  Google Scholar 

  • Elena S, Gómez G, Daròs J (2009) Evolutionary Constraints to Viroid Evolution. Viruses 1:241–254

    CAS  PubMed  Google Scholar 

  • Flores R, Navarro B, Delgado S et al (2020) Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiol Rev 44:386–398

    Article  CAS  PubMed  Google Scholar 

  • Flores R, Navarro B, Serra P et al (2022) A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evol 8:veab107

    Google Scholar 

  • Freidhoff P, Bruist M (2019) In silico survey of the central conserved regions in viroids of the Pospiviroidae family for conserved asymmetric loop structures. RNA 25:985–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Bannach O, Chen H et al (2009) Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA. Genome Res 19:913–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gas M, Hernández C, Flores R et al (2007) Processing of nuclear viroids in vivo: an interplay between RNA conformations. PLoS Pathog 3:e182

    Article  PubMed  PubMed Central  Google Scholar 

  • Gas M, Molina-Serrano D, Hernández C et al (2008) Monomeric linear RNA of citrus exocortis viroid resulting from processing in vivo has 5’-phosphomonoester and 3’-hydroxyl termini: implications for the RNase and RNA ligase involved in replication. J Virol 82:10321–10325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • German M, Pillay M, Jeong D et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  CAS  PubMed  Google Scholar 

  • Gómez G, Marquez-Molins J, Martinez G et al (2022) Plant epigenome alterations: an emergent player in viroid-host interactions. Virus Res 318:198844

    Article  PubMed  Google Scholar 

  • Gozmanova M, Denti M, Minkov I et al (2003) Characterization of the RNA motif responsible for the specific interaction of potato spindle tuber viroid RNA (PSTVd) and the tomato protein Virp1. Nucleic Acids Res 31:5534–5543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gucek T, Trdan S, Jaksé J et al (2017) Diagnostic techniques for viroids. Plant Pathol 66:339–358

    Article  Google Scholar 

  • Hadidi A, Randles J (2021) Viroids, and the legacy of Ricardo Flores (1947–2020). Cells 10:2570

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadidi A, Randles J, Flores R, Palukaitis P (eds) (2017) Viroids and satellites. Academic Press, Elsevier

    Google Scholar 

  • Hammond M, Wachter A, Breaker R (2009) A plant 5S ribosomal RNA mimic regulates alternative splicing of transcription factor IIIA pre-mRNAs. Nat Struct Mol Biol 16:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huesgen P, Overall C (2012) N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification. Physiol Plant 145:5–17

    Article  CAS  PubMed  Google Scholar 

  • Itaya A, Zhong X, Bundschuh R et al (2007) A structured viroid RNA serves as substrate for Dicer-like cleavage to produce biologically active small RNAs but is resistant to RISC-mediated degradation. J Virol 81:2980–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Smith H, Ren D et al (2018) Potato spindle tuber viroid modulates its replication through a direct interaction with a splicing regulator. J Virol 92:e01004-e1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joubert M, van den Berg N, Theron J et al (2022) Transcriptomics advancement in the complex response of plants to viroid infection. Int J Mol Sci 23:7677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalantidis K, Denti M, Tzortzakaki S et al (2007) Virp1 is a host protein with a major role in Potato spindle tuber viroid infection in Nicotiana plants. J Virol 81:12872–12880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Toh H (2008) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Kuma K, Miyata T et al (2005) Improvement in the accuracy of multiple sequence alignment program MAFFT. Genome Inform Ser 16:2233

    Google Scholar 

  • Katsarou K, Adkar-Purushothama C, Tassios E et al (2022) Revisiting the noncoding nature of pospiviroids. Cells 11:265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keese P, Symons R (1985) Domains in viroids: Evidence of intermolecular RNA rearrangement and their contribution to viroid evolution. Proc Natl Acad Sci U S A 82:4582–4586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khvorova A, Lescoute A, Westhof E et al (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712

    Article  CAS  PubMed  Google Scholar 

  • Kolonko N, Bannach O, Aschermann K et al (2006) Transcription of potato spindle tuber viroid by RNA polymerase II starts in the left terminal loop. Virology 347:392–404

    Article  CAS  PubMed  Google Scholar 

  • Layat E, Cotterell S, Vaillant I et al (2012) Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development. Plant J 71:35–44

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Koonin E (2022) Viroids and viroid-like circular RNAs: do they descend from primordial replicators? Life (basel) 12:103

    CAS  PubMed  Google Scholar 

  • Leontis N, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7:499–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Carrasco A, Flores R (2017) Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: a “naked” rod-like conformation similar but not identical to that observed in vitro. RNA Biol 14:1046–1054

    Article  PubMed  Google Scholar 

  • Martínez de Alba A, Sägesser R, Tabler M et al (2003) A bromodomain-containing protein from tomato specifically binds potato spindle tuber viroid RNA in vitro and in vivo. J Virol 77:9685–9694

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Wang Y (2022) Studies on viroid shed light on the role of RNA threedimensional structural motifs in RNA trafficking in plants. Front Plant Sci 13:836267

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Dissanayaka M, Park W et al (2022a) A nuclear import pathway exploited by pathogenic noncoding RNAs. Plant Cell 34:3543–3556

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Dissanayaka Mudiyanselage S, Wang Y (2022b) Emerging value of the viroid model in molecular biology and beyond. Virus Res 313:198730

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Tang Z, Qin J et al (2015) The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 12:709–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Malfitano M, Di Serio F, Covelli L et al (2003) Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology 313:492–501

    Article  CAS  PubMed  Google Scholar 

  • Matoušek J, Steger G (2022) The splicing variant TFIIIA-7ZF of viroid-modulated transcription factor IIIA causes physiological irregularities in transgenic tobacco and transient somatic depression of “degradome” characteristic for developing pollen. Cells 11:784

    Article  PubMed  PubMed Central  Google Scholar 

  • Matoušek J, Siglová K, Jakse J et al (2017) Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.). J Plant Physiol 213

    Google Scholar 

  • Matoušek J, Steinbachová L, Drábková L et al (2020) Elimination of viroids from tobacco pollen involves a decrease in propagation rate and an increase of the degradation processes. Int J Mol Sci 21:3029

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Duraisamy G, Matoušek J (2015) Discovering microRNAs and their targets in plants. CRC Crit Rev Plant Sci 34:553–571

    Article  CAS  Google Scholar 

  • Motard J, Bolduc F, Thompson D et al (2008) The peach latent mosaic viroid replication initiation site is located at a universal position that appears to be defined by a conserved sequence. Virology 373:362–375

    Article  CAS  PubMed  Google Scholar 

  • Navarro B, Gisel A, Rodio M et al (2012) Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J 70:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Navarro B, Flores R, Di Serio F (2021) Advances in viroid-host interactions. Annu Rev Virol 8:305–325

    Article  PubMed  Google Scholar 

  • Navarro J, Vera A, Flores R (2000) A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 268:218–225

    Article  CAS  PubMed  Google Scholar 

  • Nohales MÁ, Flores R, Darós J (2012a) Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proc Natl Acad Sci USA 109:1380513810

    Article  Google Scholar 

  • Nohales MÁ, Molina-Serrano D, Flores R et al (2012b) Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J Virol 86:8269–8276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallás V, Sánchez-Navarro J, James D (2018) Recent advances on the multiplex molecular detection of plant viruses and viroids. Front Microbiol 9:2087

    Article  PubMed  PubMed Central  Google Scholar 

  • De la Peña M, García-Robles I, Cervera A (2017) The hammerhead ribozyme: a long history for a short RNA. Molecules 22:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Ding B (2003) Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. Plant Cell 15:2566–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Repsilber D, Wiese U, Rachen M et al (1999) Formation of metastable RNA structures by sequential folding during transcription: Time-resolved structural analysis of potato spindle tuber viroid (−)-stranded RNA by temperature-gradient gel electrophoresis. RNA 5:574–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas E, Clements J, Eddy S (2017) A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat Methods 14:45–48

    Article  CAS  PubMed  Google Scholar 

  • Rodio M, Delgado S, Flores R et al (2006) Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. J Gen Virol 87:231–240

    Article  CAS  PubMed  Google Scholar 

  • Rodio M, Delgado S, De Stradis A et al (2007) A viroid RNA with a specific structural motif inhibits chloroplast development. Plant Cell 19:3610–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steger G, Perreault JP (2016) Structure and associated biological functions of viroids. Adv Virus Res 94:141–172

    Article  CAS  PubMed  Google Scholar 

  • Steger G, Riesner D (2018) Viroid research and its significance for RNA technology and basic biochemistry. Nucleic Acids Res 46:10563–10576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Hadidi A (2021) Mycoviroids: fungi as hosts and vectors of viroids. Cells 11:1335

    Article  Google Scholar 

  • Szymanski M, Barciszewska M, Erdmann V et al (2003) 5 S rRNA: structure and interactions. Biochem J 371:641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda R, Petrov A, Leontis N et al (2011) A three-dimensional RNA motif in Potato spindle tuber viroid mediates trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana. Plant Cell 23:258–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkataraman S, Badar U, Shoeb E et al (2021) An inside look into biological miniatures: molecular mechanisms of viroids. Int J Mol Sci 22:2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Jiang F, Zhu S (2022) Complex small RNA-mediated regulatory networks between viruses/viroids/satellites and host plants. Virus Res 311:198704

    Article  CAS  PubMed  Google Scholar 

  • Wang Y (2021) Current view and perspectives in viroid replication. Curr Opin Virol 47:32–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhong X, Itaya A et al (2007) Evidence for the existence of the loop E motif of Potato spindle tuber viroid in vivo. J Virol 81:2074–2077

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Qu J, Ji S et al (2016) A land plant-specific transcription factor directly enhances transcription of a pathogenic noncoding RNA template by DNA-dependent RNA polymerase II. Plant Cell 28:1094–1107

    Article  CAS  PubMed  Google Scholar 

  • Wassenegger M, Dalakouras A (2021) Viroids as a tool to study RNA-directed DNA methylation in plants. Cells 10:1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg Z, Breaker R (2011) R2R–software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg Z, Barrick J, Yao Z et al (2007) Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 35:4809–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilm A, Linnenbrink K, Steger G (2008) ConStruct: Improved construction of RNA consensus structures. BMC Bioinformatics 9:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhou C, Li J et al (2020) Functional analysis reveals G/U pairs critical for replication and trafficking of an infectious non-coding viroid RNA. Nucleic Acids Res 48:3134–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wüsthoff K, Steger G (2022) Conserved motifs and domains in members of Pospiviroidae. Cells 11:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Owens R, Hammond R (2001) Use of a vector based on Potato virus X in a whole plant assay to demonstrate nuclear targeting of Potato spindle tuber viroid. J Gen Virology 82:1491–1497

    Article  CAS  Google Scholar 

  • Zhong X, Leontis N, Qian S et al (2006) Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. J Virol 80:8566–8581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Archual A, Amin A et al (2008) A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell 20:35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Original work by the authors J. M., D. R., and G. S. was funded for many years by bilateral projects by the German Research Foundation (DFG) and the Czech Science Foundation (GACR). To all uncited authors, we apologize for not mentioning their work in this review for lack of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Steger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steger, G., Wüsthoff, K.P., Matoušek, J., Riesner, D. (2023). Viroids: Non-coding Circular RNAs Are Tiny Pathogens Provoking a Broad Response in Host Plants. In: Barciszewski, J. (eds) RNA Structure and Function. RNA Technologies, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-36390-0_14

Download citation

Publish with us

Policies and ethics