Skip to main content

Influence of Welding and Composition on the Short-Term Stable Crack Propagation Through Polyolefin Single- and Bilayered Structures

  • Chapter
  • First Online:
Deformation and Fracture Behaviour of Polymer Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 247))

Abstract

The overall stable crack initiation and propagation behaviour of fracture mechanics specimens cut from plastic pipes that were composed of different polyolefin materials were investigated using concepts of elastic–plastic fracture mechanics including the crack propagation kinetics. The effect of specimen shape, orientation, welding and lading rate on the crack resistance (R) behaviour of these materials has been thereby assessed. It was found in principle that specimen shape, orientation and welding have an influence indeed but only an unexpected small one on crack initiation behaviour and, particularly, on crack propagation behaviour. The crack initiation toughness is not sensitive to the orientation in most cases. In contrast, the crack propagation toughness is significantly affected by the orientation where the values for crack propagation in extrusion direction are larger than ones for crack propagation crosswise to that. This confirms that the morphology affects the stable crack propagation behaviour more than the stable crack initiation behaviour. In agreement with results of the microindentation test, fracture mechanics investigations also show that a lower welding pressure and a larger welding temperature, respectively, have no or a positive effect on the mechanical and fracture mechanics properties, whereas a larger pressure and a lower temperature, respectively, result in deterioration of the performance of the welded joint. Furthermore, the R-curve behaviour was investigated using specimens cut from bilayer pipe segments. It has been shown that an additional layer has a clear impact on the R-curve behaviour compared to the crack propagation in single-layer pipes, which can be explained thereby that the plastic constraint was affected by this additional layer. For clarification of the toughness-in- or -decreasing effect of an additional layer (with differing mechanical characteristics) on the layer where the crack was growing, R-curve ratios were introduced, that showed that the asymmetric mechanical properties of different layers were directly reflected in an asymmetric impact on the stable crack initiation and propagation behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hessel, J.: 100 Jahre Nutzungsdauer von Rohren aus Polyethylen. Rückblick und Perspektive. 3R Int. 46, 242–246 (2007); Hessel, J.: 50 Jahre Rohre aus Polyethylen—Eine ingenieurtechnische Betrachtung. 3R Int. 45, 128–133 (2006)

    Google Scholar 

  2. DVS-Taschenbuch.: Fachbuchreihe Schweißtechnik, vol. 68/IV, 15th edn. Verlag für Schweißen und verwandte Verfahren (DVS-Verlag), Düsseldorf (2014)

    Google Scholar 

  3. Neumann, J.A., Bockhoff, F.J.: Welding of Plastics. Literary Licensing LLC, Whitefish (2013)

    Google Scholar 

  4. Lach, R., Grellmann, W., Knesl, Z., Hutař, P., Nezbedová, E., Bierögel, C.: Verfahren zur Bewertung der lokalen mechanischen Kurzzeiteigenschaften von Schweißnähten in PE 100-Rohren. Joining Plastics—Fügen von Kunststoffen 6, pp. 126–133 (2012)

    Google Scholar 

  5. Krolopp, T.: Einfluss der Prüfkörperform, der Orientierung und der Schweißung auf das stabile Rissausbreitungsverhalten des Rohrwerkstoffs PE 100 unter quasistatischen Beanspruchungsbedingungen. Diploma thesis, Martin Luther University Halle-Wittenberg, Halle/Saale (2011)

    Google Scholar 

  6. Grellmann, W., Seidler, S. (eds.): Deformation and Fracture Behaviour of Polymers. Springer, Berlin (2001)

    Google Scholar 

  7. Lach, R., Hutař, P., Vesely, P., Nezbedová, E., Knesl, Z., Koch, T., Bierögel, C., Grellmann, W.: Assessment with indentation techniques of the local mechanical behavior of joints in polymer parts. Polimery 58, 900–905 (2013)

    Article  Google Scholar 

  8. Hashemi, S., Williams, J.G.: The effects of specimen configuration and notch tip radius on the fracture-toughness of polymers using J C. Plast. Rubber Process. Appl. 6, 363–375 (1986)

    Google Scholar 

  9. Jayadevan, K.R., Narasimhan, R., Ramamurthy, T.S., Dattaguru, B.: Effect of T-stress and loading rate on crack initiation in rate sensitive plastic materials. Int. J. Solids Struct. 39, 1757–1775 (2002)

    Article  Google Scholar 

  10. Hallstrom, S., Grenestedt, J.L.: Mixed mode fracture of cracks and wedge shaped notches in expanded PVC foam. Int. J. Fract. 88, 343–358 (1998)

    Article  Google Scholar 

  11. Lach, R., Seidler, S., Grellmann, W.: Resistance against the intrinsic rate of fracture mechanics parameters for polymeric materials under moderate impact loading. Mech. Time-Depend. Mat. 9, 103–119 (2005)

    Article  Google Scholar 

  12. Lach, R., Grellmann, W.: Time- and temperature-dependent fracture mechanics of polymers: general aspects at monotonic quasi-static and impact loading conditions. Macromol. Mater. Eng. 273, 555–567 (2008)

    Article  Google Scholar 

  13. Lach, R., Krolopp, T., Hutař, P., Grellmann, W.: Influence of the interface and the additional layer on the stable crack propagation through polyolefin bilayered structures. Procedia Mat. Sci. 867–872 (2014)

    Google Scholar 

  14. Baltá-Calleja, F.J., Fakirov, S.: Microhardness of Polymers. Cambridge Solid State Science Series. University Press, Cambridge (2000)

    Google Scholar 

  15. Šestáková, L., Náhlik, L., Hutař, P., Knesl, Z.: Fracture mechanics parameters of multilayer pipes. Appl. Comput. Mech. 1, 299–306 (2007)

    Google Scholar 

  16. Han, Y., Lach, R., Grellmann, W.: The Charpy impact fracture behaviour in ABS materials. Angew. Makromol. Chem. 270, 13–21 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

W. Grellmann and R. Lach wish to thank the German Research Foundation (projects GR 1141/30-1, 31-1 and 32-1) and the German Academic Exchange Service (DAAD) (PPP 2004/2005) for financial support. Furthermore, they would like to acknowledge the Austrian Research Promotion Agency (FFG) for financial support of the project 832113 as part of the BRIDGE 1 program. P. Hutař wishes to thank the Czech Science Foundation (GACR) for supporting this study through the projects 101/09/J027 and P108/12/1560.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lach, R., Krolopp, T., Hutař, P., Nezbedová, E., Grellmann, W. (2017). Influence of Welding and Composition on the Short-Term Stable Crack Propagation Through Polyolefin Single- and Bilayered Structures. In: Grellmann, W., Langer, B. (eds) Deformation and Fracture Behaviour of Polymer Materials. Springer Series in Materials Science, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-319-41879-7_15

Download citation

Publish with us

Policies and ethics