Skip to main content

Application of the UTCI in High-Resolution Urban Climate Modeling Techniques

  • Chapter
  • First Online:
Applications of the Universal Thermal Climate Index UTCI in Biometeorology

Part of the book series: Biometeorology ((BIOMET,volume 4))

  • 488 Accesses

Abstract

Urban population is affected by many processes typical for urban landscapes. Spatial patterns of physical, social, behavioral and environmental elements of urban environments and their interactions with human beings have been therefore gaining interest of scholars as well as politicians and local actors for decades. The combination of climate change, growing urban population and increasing computing capabilities opens up space for new areas of spatial analyses in urban environments—among them analyses of human thermal comfort. Consequently, modeling of thermal exposure as a cardinal factor of thermal comfort in real outdoor urban environments represents a pending and challenging task for urban climate research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aram F, García EH, Solgi E, Mansournia S (2019) Urban green space cooling effect in cities. Heliyon 5(4):

    Article  Google Scholar 

  • Belda M, Resler J, Geletič J, Krč P, Maronga B, Sühring M, Auvinen M (2020) Sensitivity analysis of the PALM model system 6.0 in the urban environment. Geosci Model Dev Discuss 1–32

    Google Scholar 

  • Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56(3):481–494

    Article  Google Scholar 

  • Bruse M (2004) ENVI-met 3.0: updated model overview. University of Bochum. Retrieved from: www.envi-met.com

    Google Scholar 

  • De Ridder K, Lauwaet D, Maiheu B (2015) UrbClim–A fast urban boundary layer climate model. Urban Climate 12:21–48

    Article  Google Scholar 

  • EPW—EnergyPlus Weather. Available online: https://energyplus.net/weather-location/europe_wmo_region_6/CZE//CZE_Prague.115180_IWEC. Accessed on 13 Jan 2021

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441

    Article  Google Scholar 

  • Fröhlich J, Von Terzi D (2008) Hybrid LES/RANS methods for the simulation of turbulent flows. Prog Aerosp Sci 44(5):349–377

    Article  Google Scholar 

  • Fröhlich D, Matzarakis A (2020) Calculating human thermal comfort and thermal stress in the PALM model system 6.0. Geosci Model Dev 13(7):3055–3065

    Google Scholar 

  • Gál CV, Kántor N (2020) Modeling mean radiant temperature in outdoor spaces, A comparative numerical simulation and validation study. Urban Climate 32:

    Article  Google Scholar 

  • Gatto E, Buccolieri R, Aarrevaara E, Ippolito F, Emmanuel R, Perronace L, Santiago JL (2020) Impact of urban vegetation on outdoor thermal comfort: comparison between a Mediterranean city (Lecce, Italy) and a Northern European city (Lahti, Finland). Forests 11(2):228

    Article  Google Scholar 

  • Gehrke KF, Sühring M, Maronga B (2020) Modeling of land-surface interactions in the PALM model system 6.0: land surface model description, first evaluation, and sensitivity to model parameters. Geosci Model Dev Discuss 1–34

    Google Scholar 

  • Geletič J, Lehnert M, Savić S, Milošević D (2018) Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci Total Environ 624:385–395

    Article  Google Scholar 

  • Geletič J, Lehnert M, Jurek M (2020) Spatiotemporal variability of air temperature during a heat wave in real and modified landcover conditions: Prague and Brno (Czech Republic). Urban Climate 31:

    Article  Google Scholar 

  • Geletič J, Lehnert M, Krč P, Resler J, Krayenhoff ES (2021) High-resolution modelling of thermal exposure during a hot spell: a case study using PALM-4U in Prague, Czech Republic. Atmosphere 12(2):175

    Article  Google Scholar 

  • Gronemeier T, Surm K, Harms F, Leitl B, Maronga B, Raasch S (2020) Validation of the dynamic core of the PALM model system 6.0 in urban environments: LES and wind-tunnel experiments. Geosci Model Develop Discuss 1–26

    Google Scholar 

  • Havenith G, Fiala D, Błazejczyk K, Richards M, Bröde P, Holmér I, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56(3):461–470

    Article  Google Scholar 

  • Hellsten A, Ketelsen K, Sühring M, Auvinen M, Maronga B, Knigge C, Raasch S (2020) A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0. Geosci Model Develop Discuss 1–45

    Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75

    Article  Google Scholar 

  • Huttner S (2012) Further development and application of the 3D microclimate simulation ENVI-met (Doctoral dissertation, Universitätsbibliothek Mainz)

    Google Scholar 

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56(3):421–428

    Article  Google Scholar 

  • Kadasch E, Sühring M, Gronemeier T, Raasch S (2020) Mesoscale nesting interface of the PALM model system 6.0. Geosci Model Develop Discuss 1–48

    Google Scholar 

  • Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Central Eur J Geosci 3(1):90–100

    Google Scholar 

  • Kántor N, Gál CV, Gulyás Á, Unger J (2018) The impact of façade orientation and woody vegetation on summertime heat stress patterns in a central European square: comparison of radiation measurements and simulations. Adv Meteorol

    Google Scholar 

  • Khan B, Banzhaf S, Chan EC, Forkel R, Kanani-Sühring F, Ketelsen K, Sühring M (2020) Development of an atmospheric chemistry model coupled to the PALM model system 6.0: implementation and first applications. Geosci Model Develop Discuss 1–34

    Google Scholar 

  • Krč P, Resler J, Sühring M, Schubert S, Salim MH, Fuka V (2021) Radiative Transfer Model 3.0 integrated into the PALM model system 6.0. Geosci Model Develop 14(5):3095–3120

    Google Scholar 

  • Krüger EL, Minella FO, Matzarakis A (2014) Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies. Int J Biometeorol 58(8):1727–1737

    Article  Google Scholar 

  • Lee H, Mayer H (2016) Validation of the mean radiant temperature simulated by the RayMan software in urban environments. Int J Biometeorol 60(11):1775–1785

    Article  Google Scholar 

  • Lehnert M (2013) The soil temperature regime in the urban and suburban landscapes of Olomouc, Czech Republic. Moravian Geograph Rep 21(3):27–36

    Article  Google Scholar 

  • Lehnert M, Tokar V, Jurek M, Geletič J (2020) Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. Int J Biometeorol 1–13

    Google Scholar 

  • Lindberg F, Holmer B, Thorsson S (2008) SOLWEIG 1.0–Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int J Biometeorol 52(7):697–713

    Google Scholar 

  • Lindberg F, Onomura S, Grimmond CSB (2016) Influence of ground surface characteristics on the mean radiant temperature in urban areas. Int J Biometeorol 60(9):1439–1452

    Article  Google Scholar 

  • Lobaccaro G, Acero JA, Sanchez Martinez G, Padro A, Laburu T, Fernandez G (2019) Effects of orientations, aspect ratios, pavement materials and vegetation elements on thermal stress inside typical urban canyons. Int J Environ Res Public Health 16(19):3574

    Article  Google Scholar 

  • Maronga B, Banzhaf S, Burmeister C, Esch T, Forkel R, Fröhlich D, Raasch S (2020) Overview of the PALM model system 6.0. Geosci Model Develop 13(3):1335–1372

    Google Scholar 

  • Middel A, Krayenhoff ES (2019) Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: introducing the MaRTy observational platform. Sci Total Environ 687:137–151

    Article  Google Scholar 

  • Morakinyo TE, Kong L, Lau KKL, Yuan C, Ng E (2017) A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build Environ 115:1–17

    Article  Google Scholar 

  • Müller N, Kuttler W, Barlag AB (2014) Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoret Appl Climatol 115(1):243–257

    Article  Google Scholar 

  • Park M, Hagishima A, Tanimoto J, Narita KI (2012) Effect of urban vegetation on outdoor thermal environment: field measurement at a scale model site. Build Environ 56:38–46

    Article  Google Scholar 

  • Resler J, Krč P, Belda M, Juruš P, Benešová N, Lopata J, Kanani-Sühring F (2017) PALM-USM v1. 0: a new urban surface model integrated into the PALM large-eddy simulation model. Geosci Model Develop 10(10):3635–3659

    Google Scholar 

  • Resler J, Eben K, Geletič J, Krč P, Rosecký M, Sühring M, Vlček O (2020a). Validation of the PALM model system 6.0 in real urban environment; case study of Prague-Dejvice, Czech Republic. Geosci Model Develop Discuss 1–57

    Google Scholar 

  • Resler J, Eben K, Geletič J, Krč P, Rosecký M, Sühring M, Belda M, Fuka V, Halenka T, Huszár P, Karlický J, Benešová N, Ďoubalová J, Honzáková K, Keder J, Nápravníková Š, Vlček O (2020b) PALM 6.0 revision 4508. [dataset]

    Google Scholar 

  • Rui L, Buccolieri R, Gao Z, Ding W, Shen J (2018) The impact of green space layouts on microclimate and air quality in residential districts of Nanjing, China. Forests 9(4):224

    Article  Google Scholar 

  • Salim MH, Schubert S, Resler J, Krč P, Maronga B, Kanani-Sühring F, Schneider C (2020) Importance of radiative transfer processes in urban climate models: a study based on the PALM model system 6.0. Geosci Model Develop Discuss 1–55

    Google Scholar 

  • Sievers U (2012) Das kleinskalige Strömungsmodell MUKLIMO_3 Teil 1: Theoretische Grundlagen, PC-Basisversion und Validierung. Berichte des Deutschen Wetterdienstes, Band 240, Offenbach am Main, Germany (German)

    Google Scholar 

  • Sievers U (2016) Das kleinskalige Strömungsmodell MUKLIMO_3. Teil 2: Thermodynamische Erweiterungen. Berichte des Deutschen Wetterdienstes, Band 248, Offenbach am Main, Germany (German)

    Google Scholar 

  • Schlünzen KH, Hinneburg D, Knoth O, Lambrecht M, Leitl B, Lopez S, Wolke R (2003) Flow and transport in the obstacle layer: first results of the micro-scale model MITRAS. J Atmos Chem 44(2):113–130

    Article  Google Scholar 

  • Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteor Soc 93(12):1879–1900

    Article  Google Scholar 

  • Tsoka S, Tsikaloudaki A, Theodosiou T (2018) Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustain Cities Soc 43:55–76

    Article  Google Scholar 

  • Vanos JK, Baldwin JW, Jay O, Ebi KL (2020) Simplicity lacks robustness when projecting heat-health outcomes in a changing climate. Nat Commun 11(1):1–5

    Article  Google Scholar 

  • Verein Deutscher Ingenieure (VDI) (1994) Umweltmeteorologie–Wechselwirkung zwischen Atmosphäre und Oberflächen—Berechnung der kurz-und langwelligen Strahlung (Environmental meteorology–interaction between atmosphere and surfaces—Computation of short-and longwave radiation). (VDI 3789, Part 2). Beuth, Berlin

    Google Scholar 

  • Verein Deutscher Ingenieure (VDI) (1998) Umweltmeteorologie: Methoden zur human-biometeorologischen Bewertung von Klima und Lufthygiene für die Stadt- und Regionalplanung, Teil 1: Klima [Environmental meteorology: methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level. Part 1: Climate (VDI 3787, Part I). Beuth, Berlin

    Google Scholar 

  • Verein Deutscher Ingenieure (VDI) (2001) Umweltmeteorologie: Wechselwirkungen zwischen Atmosphäre und Oberflächen, Berechnung der spektralen Bestrahlungsstärken im solaren Wellenlängenbereich [Environmental Meteorology: Interactions between atmosphere and surfaces, calculation of spectral irradiances in the solar wavelength range] (VDI 3789, Part 3). Beuth, Berlin

    Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384

    Article  Google Scholar 

Download references

Acknowledgements

The terrain-mapping campaign of building properties was co-financed by the Strategy AV21 project “Energy interactions of buildings and the outdoor urban environment” and by the Czech Academy of Sciences. We would like to thank Prof. Jiří Cajthaml and the students of the Faculty of Civil Engineering of the Czech Technical University, Prague, for their help with the terrain-mapping campaign. The PALM simulations, and pre- and postprocessing were performed with the HPC infrastructure of the Institute of Computer Science of the Czech Academy of Sciences (ICS), supported by the long-term strategic development financing of the ICS (RVO:67985807). Parts of the simulations were performed on the supercomputer of the IT4I Czech supercomputing center, supported by the Ministry of Education, Youth, and Sports from the Large Infrastructures for Research, Experimental Development, and Innovations project “IT4Innovations National Supercomputing Center—LM2015070”. The WRF and CAMx simulations were performed on the HPC infrastructure of the Department of Atmospheric Physics of the Faculty of Mathematics and Physics of Charles University, Prague, supported by the Operational Program Prague—Growth Pole of the Czech Republic project “Urbanization of weather forecast, air-quality prediction, and climate scenarios for Prague” (CZ.07.1.02/0.0/0.0/16_040/0000383), which is co-financed by the EU. Author Jan Geletič was supported by the Czech Academy of Sciences under the program for research and mobility support of starting researchers (MSM100302001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Geletič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geletič, J., Lehnert, M., Resler, J., Krč, P. (2021). Application of the UTCI in High-Resolution Urban Climate Modeling Techniques. In: Krüger, E.L. (eds) Applications of the Universal Thermal Climate Index UTCI in Biometeorology. Biometeorology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-76716-7_9

Download citation

Publish with us

Policies and ethics