Skip to main content

Molecular Design, Synthesis, and Properties of Surface-Active Comb-Like PEG-Containing Polymers and Derived Supramolecular Structures for Drug Delivery

  • Chapter
  • First Online:

Abstract

This chapter is devoted to the tailored synthesis and study of the properties of novel surface-active polymeric drug carriers containing side chains of PEG and other, including polyelectrolyte, chains for waterborne delivery systems. The strategy of synthesis of PEG-containing polymeric carriers via reactions of radical polymerization and further polymer-analogous transformations involving epoxide (so called “grafting to”) and peroxide ("grafting from") fragments of epoxide-containing polyperoxides of various composition and fine structure were developed and studied. The dependence of PEG grafting degree on the length of the blocks of GMA links in the backbone was shown. Water-soluble surfactants combining grafted side PEG and anionic polyelectrolyte chains were synthesized using polymerization initiated by the comb-like PEG-containing macro-initiator with side peroxide groups. An another promising way of “grafting through” synthesis of the comb-like polymeric drug carriers with side PEG chains via controlled polymerization of PEG methacrylate macromers in the presence of functional chain transfer agents was developed. The molecular weight characteristics, functionality, and surface activity of the developed polymers were studied using SEC and GPC techniques, FT-IR, NMR spectroscopy, and elementary analysis. The binding of water-soluble and water-insoluble anticancer drugs with PEGylated carriers via combination of different mechanisms was studied by using luminescent, RAMAN, UV-spectroscopy, and surface tension measurement techniques. Stable waterborne drug delivery systems based on the polymeric micelles loaded with water-soluble and water-insoluble drugs were developed and studied using SAXS, TEM, SEM, and DLS methods. The developed PEG-containing comb-like polymeric carriers and derived drug delivery systems were shown to be nontoxic in vitro (cell cultures) and in vivo (laboratory mice and rats). Their use enhances drug delivery to tumor cells, reduces the effective drug therapeutic dose, and offers a possibility to circumvent acquired resistance of tumor cells to drug action.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A:

Adsorption at water/air interface

AA:

Acrylic acid

BA:

Butyl acrylate

CGE:

Cumene glycidyl ether, 2-{[(4-isopropyl benzyl)oxi]methyl}oxirane

CMC:

Critical micelle concentration

DLS:

Dynamic light scattering

DMAEMA:

Dimethylaminoethyl methacrylate

DMM:

Dimethyl maleate

FCTA:

Functional chain transfer agents

FT-IR:

Fourier-transform infrared spectroscopy

GMA:

Glycidyl methacrylate

GPC:

Gel permeation chromatography

MP:

Monoperoxine, 1-isopropyl-3(4)-[1-(tert-butyl peroxy)-1-methylethyl] benzene

mPEG:

Poly(ethylene glycol) monomethyl ether

MWD:

Molecular weight distribution

NMR:

Nuclear magnetic resonance

NVP:

N-vinylpyrrolidone

PEG:

Polyethylene glycol

PEGMA:

Polyethylene glycol methacrylate

PNC:

Polymeric nanoscale carriers

RAMAN:

Raman spectroscopy

S0:

Limiting area occupied by surfactant molecule

SAXS:

Small-angle X-ray scattering

SEC:

Size-exclusion chromatography

SEM:

Scanning electron microscope

TEM:

Transmission electron microscopy

VEP:

5-(tert-butylperoxy)-5-methylhex-1-en-3-yne

References

  • Balci, M., Alli, A., Hazer, B., Güven, O., Cavicchi, K., & Cakmak, M. (2010). Synthesis and characterization of novel comb-type amphiphilic graft copolymers containing polypropylene and polyethylene glycol. Polymer Bulletin, 64(7), 691–705. https://doi.org/10.1007/s00289-009-0211-3

    Article  Google Scholar 

  • Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33(9), 941. https://doi.org/10.1038/nbt.3330

    Article  Google Scholar 

  • Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura, M., et al. (2011). Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology, 6(12), 815. https://doi.org/10.1038/nnano.2011.166

    Article  Google Scholar 

  • Chamundeeswari, M., Jeslin, J., & Verma, M. L. (2019). Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 17(2), 849–865. https://doi.org/10.1007/s10311-018-00841-1

    Article  Google Scholar 

  • Dong, R., Zhou, Y., & Zhu, X. (2014). Su pramolecular dendritic polymers: From synthesis to applications. Accounts of Chemical Research, 47(7), 2006–2016. https://doi.org/10.1021/ar500057e

    Article  Google Scholar 

  • Finiuk, N., Boiko, N., Klyuchivska, O., Коbylinska, L., Kril, I., Zimenkovsky, B., Lesyk, R., & Stoika, R. (2017). 4-Thiazolidinone derivative Les-3833 effectively inhibits viability of human melanoma cells through activating apop-totic mechanisms. Croatian Medical Journal, 58(2), 129–139. https://doi.org/10.3325/cmj.2017.58.129

    Article  Google Scholar 

  • Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A., Tuukkanen, A., Mertens, H. D. T., et al. (2017). ATSAS 2.8: A comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of Applied Crystallography, 50(4), 1212–1225. https://doi.org/10.1107/S1600576717007786

    Article  Google Scholar 

  • Heffeter, P., Riabtseva, A., Senkiv, Y., Kowol, C. R., Körner, W., Jungwith, U., et al. (2014). Nanoformulation improves activity of the (pre) clinical anticancer ruthenium complex KP1019. Journal of Biomedical Nanotechnology, 10(5), 877–884. https://doi.org/10.1166/jbn.2014.1763

    Article  Google Scholar 

  • Hou, S. S., & Kuo, P. L. (2001). Synthesis and characterization of amphiphilic graft copolymers based on poly (sty-rene-co-maleic anhydride) with oligo (oxyethylene) side chains and their GPC behavior. Polymer, 42(6), 2387–2394. https://doi.org/10.1016/S0032-3861(00)00476-6

    Article  Google Scholar 

  • Hu, S., Wang, Y., McGinty, K., & Brittain, W. J. (2006). Surface modification of a silicate substrate by a “grafting from” methodology utilizing a perester initiator. European Polymer Journal, 42(9), 2053–2058. https://doi.org/10.1016/j.eurpolymj.2006.03.033

    Article  Google Scholar 

  • Kobylinska, L., Patereha, I., Finiuk, N., Mitina, N., Riabtseva, A., Kotsyumbas, I., Stoika, R., Zaichenko, A., & Vari, S. G. (2018). Comb-like PEG-containing polymeric composition as low toxic drug nanocarrier. Cancer Nanotechnology, 9(1), 11. https://doi.org/10.1186/s12645-018-0045-5

    Article  Google Scholar 

  • Kulthe, S. S., Choudhari, Y. M., Inamdar, N. N., & Mourya, V. (2012). Polymeric micelles: Authoritative aspects for drug delivery. Designed Monomers and Polymers, 15(5), 465–521. https://doi.org/10.1080/1385772X.2012.688328

    Article  Google Scholar 

  • Kоbylinska, L. I., Boiko, N. M., Panchuk, R. R., Grytsyna, I. I., Klyuchivska, O. Y., Biletska, L. P., Lesyk, R. B., Zіmenkovsky, B. S., & Stoika, R. S. (2016). Putative anticancer potential of novel 4-thiazolidinone derivatives: Cyto-toxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats. Croatian Medical Journal, 57(2), 151–163. https://doi.org/10.3325/cmj.2016.57.151

    Article  Google Scholar 

  • Kоbylinska, L. I., Havrylyuk, D. Y., Mitina, N. E., Zаichenko, A. S., Lesyk, R. B., Zіmenkovsky, B. S., & Stoika, R. S. (2016). Biochemical indicators of nephrotoxicity in blood serum of rats treated with novel 4-thiazolidinone derivatives or their complexes with polyethylene glycol-containing nanoscale polymeric carrier. The Ukrainian Biochemical Journal, 88(1), 51–60. https://doi.org/10.15407/ubj88.01.051

    Article  Google Scholar 

  • Kоbylinska, L. I., Havrylyuk, D. Y., Ryabtseva, А. О., Mitina, N. E., Zаichenko, О. S., Lesyk, R. B., et al. (2015). Biochemical indicators of hepatotoxicity in blood serum of rats under the effect of novel 4-thiazolidinone derivatives and doxorubicin and their complexes with polyethyleneglycol-containing nanoscale polymeric carrier. The Ukrainian Biochemical Journal, 87(2), 122–132. https://doi.org/10.15407/ubj87.02.122

    Article  Google Scholar 

  • Lombardo, D., Kiselev, M. A., & Caccamo, M. T. (2019). Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/3702518

  • Lu, Y., Zhang, E., Yang, J., & Cao, Z. (2018). Strategies to improve micelle stability for drug delivery. Nano Research, 11(10), 4985–4998. https://doi.org/10.1007/s12274-018-2152-3

    Article  Google Scholar 

  • Meng, T., Gao, X., Zhang, J., Yuan, J., Zhang, Y., & He, J. (2009). Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer, 50(2), 447–454. https://doi.org/10.1016/j.polymer.2008.11.011

    Article  Google Scholar 

  • Mitina, N. E., Riabtseva, A. O., Garamus, V. M., Lesyk, R. B., Volianiuk, K. A., Izhyk, O. M., & Zaichenko, A. S. (2020). Morphology of the micelles formed by comb-like peg containing copolymer loaded with antitumor substances with different water solubility. Ukrainian Journal of Physics, 65(8), 670–678. https://doi.org/10.15407/ujpe65.8.670

    Article  Google Scholar 

  • Najafi, V., Kabiri, K., & Ziaee, F. (2013). Preparation and characterization of alcogels based on (poly ethylene glycol methyl ether methacrylate-acrylic acid) copolymers. Polymer-Plastics Technology and Engineering, 52(7), 667–673. https://doi.org/10.1080/03602559.2012.762664

    Article  Google Scholar 

  • Navya, P. N., Kaphle, A., Srinivas, S. P., Bhargava, S. K., Rotello, V. M., & Daima, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6(1), 23. https://doi.org/10.1186/s40580-019-0193-2

    Article  Google Scholar 

  • Neugebauer, D., Zhang, Y., Pakula, T., Sheiko, S. S., & Matyjaszewski, K. (2003). Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers. Macromolecules, 36(18), 6746–6755. https://doi.org/10.1021/ma0345347

    Article  Google Scholar 

  • Paiuk, O. L., Mitina, N. Y., Riabtseva, A. O., Haramus, V. M., Dolynska, L. V., Nadashkevych, Z. Y., & Zaichenko, A. S. (2018). Structure and colloidal-chemical characteristics of polymeric surface active substances based on polyethylene glycol-containing macromeres. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 63–71. (in Ukrainian).

    Google Scholar 

  • Panchuk, R. R., Chumak, V. V., Fil, M. R., Havrylyuk, D. Y., Zimenkovsky, B. S., Lesyk, R. B., & Stoika, R. S. (2012). Study of molecular mechanisms of proapoptotic action of novel heterocyclic 4-thiazolidone derivatives. Biopolymers and Cell, 28(2), 121–128. https://doi.org/10.7124/bc.00003d

    Article  Google Scholar 

  • Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., et al. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8

    Article  Google Scholar 

  • Reimer, L. (1998). Scanning electron microscopy: Physics of image formation and microanalysis. Springer. https://doi.org/10.1007/978-3-540-38967-5

    Book  Google Scholar 

  • Ren, J. M., McKenzie, T. G., Fu, Q., Wong, E. H., Xu, J., An, Z., et al. (2016). Star polymers. Chemical Reviews, 116(12), 6743–6836. https://doi.org/10.1021/acs.chemrev.6b00008

    Article  Google Scholar 

  • Riabtseva, A., Mitina, N., Boiko, N., Garasevich, S., Yanchuk, I., Stoika, R., et al. (2012). Structural and colloidal-chemical characteristics of nanosized drug delivery systems based on pegylated comb-like carriers. Chemistry & Chemical Technology, 6(3), 291–295.

    Article  Google Scholar 

  • Riabtseva, A., Mitina, N., Grytsyna, I., Boiko, N., Garamus, V. M., Stryhanyuk, H., et al. (2016). Func-tional micelles formed by branched polymeric surfactants: Synthesis, characteristics, and application as nanoreactors and carriers. European Polymer Journal, 75, 406–422. https://doi.org/10.1016/j.eurpolymj.2016.01.006

    Article  Google Scholar 

  • Rzayev, Z. M. (2011). Graft copolymers of maleic anhydride and its isostructural analogues: High performance engineering materials. arXiv preprint arXiv:1105.1260.

    Google Scholar 

  • Sayle, R. A., & Milner-White, E. J. (1995). RASMOL: Biomolecular graphics for all. Trends in Biochemical Sciences, 20(9), 374–376. https://doi.org/10.1016/S0968-0004(00)89080-5

    Article  Google Scholar 

  • Schmidt, P. W. (1991). Small-angle scattering studies of disordered, porous and fractal systems. Journal of Applied Crystallography, 24(5), 414–435. https://doi.org/10.1107/S0021889891003400

    Article  Google Scholar 

  • Schmidt, P. W. (1995). Some fundamental concepts and techniques useful in small-angle scattering studies of disor-dered solids. In H. Brumberger (Ed.), Modern aspects of small-angle scattering. Nato ASI series (Series C: Mathemati-cal and physical sciences) (Vol. vol 451, pp. 1–56). Springer. https://doi.org/10.1007/978-94-015-8457-9_1

    Google Scholar 

  • Senkiv, J., Finiuk, N., Kaminskyy, D., Havrylyuk, D., Wojtyra, M., Kril, I., et al. (2016). 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. European Journal of Medicinal Chemistry, 117, 33–46. https://doi.org/10.1016/j.ejmech.2016.03.089

    Article  Google Scholar 

  • Senkiv, Y., Riabtseva, A., Heffeter, P., Boiko, N., Kowol, C. R., Jungwith, U., et al. (2014). Enhanced anticancer activity and circumvention of resistance mechanisms by novel polymeric/phospholipidic nanocarriers of doxorubicin. Journal of Biomedical Nanotechnology, 10(7), 1369–1381. https://doi.org/10.1166/jbn.2014.1864

    Article  Google Scholar 

  • Simone, E. A., Dziubla, T. D., & Muzykantov, V. R. (2008). Polymeric carriers: Role of geometry in drug delivery. Expert Opinion on Drug Delivery, 5(12), 1283–1300. https://doi.org/10.1517/17425240802567846

    Article  Google Scholar 

  • Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99, 28–51. https://doi.org/10.1016/j.addr.2015.09.012

    Article  Google Scholar 

  • Svergun, D. I. (1999). Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophysical Journal, 76(6), 2879–2886. https://doi.org/10.1016/S0006-3495(99)77443-6

    Article  Google Scholar 

  • Torchilin, V. P. (2010). Passive and active drug targeting: Drug delivery to tumors as an example. In M. Schäfer-Korting (Ed.), Drug delivery. Handbook of experimental pharmacology (Vol. vol 197). Springer. https://doi.org/10.1007/978-3-642-00477-3_1

    Google Scholar 

  • Tsarevsky, N. V., Bencherif, S. A., & Matyjaszewski, K. (2007). Graft copolymers by a combination of ATRP and two different consecutive click reactions. Macromolecules, 40(13), 4439–4445. https://doi.org/10.1021/ma070705m

    Article  Google Scholar 

  • Tsuji, S., Aso, Y., Ohara, H., & Tanaka, T. (2019). Polymeric water-soluble activated esters: Synthesis of polymer backbones with pendant N-hydoxy-sulfosuccinimide esters for post-polymerization modification in water. Polymer Journal, 51(10), 1015–1022. https://doi.org/10.1038/s41428-019-0221-4

    Article  Google Scholar 

  • ud Din, F., Aman, W., Ullah, I., Qureshi, O. S., Mustapha, O., Shafique, S., & Zeb, A. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 12, 7291. https://doi.org/10.2147/IJN.S146315

    Article  Google Scholar 

  • Zaichenko, A. S., Voronov, S. A., Shevchuk, O. M., Vasilyev, V. P., & Kuzayev, A. I. (1998). Kinetic features and molecular-weight characteristics of terpolymerization products of the systems based on vinyl acetate and 2-tert-butyl-peroxy-2-methyl-5-hexene-3-yne. Journal of Applied Polymer Science, 67(6), 1061–1066. https://doi.org/10.1002/(SICI)1097-4628(19980207)67:6<1061::AID-APP13>3.0.CO;2-3

    Article  Google Scholar 

  • Zhang, Q., & Mischnick, P. (2017). Influence of stereochemistry on relative reactivities of glucosyl and mannosyl residues in Konjac glucomannan (KGM). Macromolecular Chemistry and Physics, 218(17), 1700119. https://doi.org/10.1002/macp.201700119

    Article  Google Scholar 

  • Zhu, S., Hong, M., Tang, G., Qian, L., Lin, J., Jiang, Y., & Pei, Y. (2010). Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: The effects of PEGylation degree and drug conjugation style. Biomaterials, 31(6), 1360–1371. https://doi.org/10.1016/j.biomaterials.2009.10.044

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. A.S. Voloshinovskyi and Prof. V.V. Vistovskyi (Ivan Franko National University of Lviv) for their assistance in studying the luminescence properties of the polymer complexes and Senior Researcher V.O. Glazunova (DonPTI, the NAS of Ukraine) for her help in the TEM study of polymer complexes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zaichenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitina, N. et al. (2022). Molecular Design, Synthesis, and Properties of Surface-Active Comb-Like PEG-Containing Polymers and Derived Supramolecular Structures for Drug Delivery. In: Stoika, R.S. (eds) Biomedical Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-030-76235-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76235-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76234-6

  • Online ISBN: 978-3-030-76235-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics