Skip to main content
Log in

Detecting time series anomalies using hybrid methods applied to Radon signals recorded in caves for possible correlation with earthquakes

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Anomalies in the Radon activity concentration time series recorded in five European caves (Czech Republic, Slovakia, Slovenia) are detected using three hybrid methods: (1) multiple linear regression and autoregressive integrated moving average statistical methods, (2) Empirical Mode Decomposition with Support Vector Regression techniques and (3) the Singular Spectrum Analysis composed with a predicting methodology. Results coming from the three methods are compared and the best hybrid method is selected based on statistical evaluation criteria of the uncertainty. Radon anomalies occur ± 30 days from earthquake occurrence, selected according to the Dobrovolsky’s earthquake preparation zone formula and to seismic events (with magnitude ≥ 4) occurred in the neighboring European Countries to the monitoring caves. The anomalies detection furnishes results consistent across the used methodologies, as proven by the calculation of a statistical parameter that search the presence of anomalies coming from the hybrid methods within ± 30 days from earthquake event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Tamimi MH, Abumurad KM (2001) Radon anomalies along faults in North of Jordan. Radiat Meas 34(1–6):397–400

    Google Scholar 

  • Ambrosino F (2020) Study on a peak shape fitting model for the analysis of alpha-particle spectra. Appl Radiat Isot 159:109090

    Google Scholar 

  • Ambrosino F, Buompane R, Pugliese M, Roca V, Sabbarese C (2018a) RaMonA system for radon and thoron measurement. Nuovo Cimento C 41(6):222

    Google Scholar 

  • Ambrosino F, Pugliese M, Roca V, Sabbarese C (2018b) Innovative methodologies for the analysis of radon time series. Nuovo Cimento C 41(6):223

    Google Scholar 

  • Ambrosino F, De Cesare W, Roca V, Sabbarese C (2019a) Mathematical and geophysical methods for searching anomalies of the Radon signal related to earthquakes. J Phys Conf Ser 1226:012025

    Google Scholar 

  • Ambrosino F, Thinová L, Briestenský M, Sabbarese C (2019b) Anomalies identification of Earth’s rotation rate time series (2012–2017) for possible correlation with strong earthquakes occurrence. Geod Geodyn 10(6):455–459

    Google Scholar 

  • Ambrosino F, Thinová L, Briestenský M, Sabbarese C (2019c) Analysis of Radon time series recorded in Slovak and Czech caves for the detection of anomalies due to seismic phenomena. Radiat Prot Dosim 186(2–3):428–432

    Google Scholar 

  • Ambrosino F, Thinová L, Briestenský M, Giudicepietro F, Roca V, Sabbarese C (2020a) Analysis of geophysical and meteorological parameters influencing 222Rn activity concentration in Mladeč caves (Czech Republic) and in soils of Phlegrean Fields caldera (Italy). Appl Radiat Isot 160:109140

    Google Scholar 

  • Ambrosino F, Thinová L, Hýža M, Sabbarese C (2020b) 214Bi/214Pb radioactivity ratio three-year monitoring in rainwater in Prague. Nukleonika 65(2):115–119

    Google Scholar 

  • Ambrosino F, Sabbarese C, Roca V, Giudicepietro F, Chiodini G (2020c) Analysis of 7-years Radon time series at Campi Flegrei area (Naples, Italy) using artificial neuralnetwork method. Appl Radiat Isot 109239. https://doi.org/10.1016/j.apradiso.2020.109239

  • Amit G, Datz H (2018) Automatic detection of anomalous thermoluminescent dosimeter glow curves using machine learning. Radiat Meas 117:80–85

    Google Scholar 

  • Anderson OL, Grew PC (1977) Stress-corrosion theory of crack-propagation with applications to geophysics. Rev Geophys 15(1):77–104

    Google Scholar 

  • Bashir ZA, El-Hawary ME (2009) Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans Power Syst 24(1):20–27

    Google Scholar 

  • Briceño H, Rocco CM, Zio E (2013) Singular spectrum analysis for forecasting of electric load demand. Chem Eng Trans 33:919–924

    Google Scholar 

  • Briestenský M, Thinová L, Praksová R, Stemberk J, Rowberry MD, Knejflová Z (2014) Radon, carbon dioxide and fault displacements in central Europe related to the Tōhoku earthquake. Radiat Prot Dosim 160(1–3):68–82

    Google Scholar 

  • Cadenas E, Rivera W (2010) Wind speed forecasting in three different regions of Mexico using a hybrid ARIMA-ANN model. Renew Energy 35(12):2732–2738

    Google Scholar 

  • Chaudhuri H, Ghose D, Bhandari RK, Sen P, Sinha B (2010) The enigma of helium. Acta Geod Geophys Hung 45(4):452–470

    Google Scholar 

  • Das NK, Bhandari NK, Ghose D, Sen P, Sinha B (2009) Significant anomalies of helium, radon and gamma ahead of 7.9 M China earthquake. Acta Geod Geophys Hung 44(3):357–365

    Google Scholar 

  • Du P, Wang J, Yang W, Niu T (2018) Multi-step ahead forecasting in electrical power system using a hybrid forecasting system. Renew Energy 122:533–550

    Google Scholar 

  • Duan WY, Han Y, Huang LM, Zhao BB, Wang MH (2016) A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Eng 124:54–73

    Google Scholar 

  • Elío J, Ortega MF, Nisi B, Mazadiego LF, Vaselli O, Caballero J, Grandia F (2015) CO2 and Rn degassing from the natural analog of Campo de Calatrava (Spain): Implications for monitoring of CO2 storage sites. Int J Greenh Gas Control 32:1–14

    Google Scholar 

  • Fleischer RL (1981) Dislocation model for radon response to distant earthquakes. Geophys Res Lett 8(5):477–480

    Google Scholar 

  • Ghosh D, Deb A, Sengupta R (2009) Anomalous radon emission as precursor of earthquake. J Appl Geophys 69(2):67–81

    Google Scholar 

  • Godah W, Szelachowska M, Krynski J (2018) Application of the PCA/EOF method for the analysis and modelling of temporal variations of geoid heights over Poland. Acta Geod Geophys 53(1):93–105

    Google Scholar 

  • Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5(2):239–257

    Google Scholar 

  • Hauksson E, Goddard JG (1981) Radon earthquake precursor studies in Iceland. J Geophys Res 86(8):7037–7054

    Google Scholar 

  • Kavitha B, Raghukanth STG (2016) Regional level forecasting of seismic energy release. Acta Geod Geophys 51(3):359–391

    Google Scholar 

  • Khamidov KhL (2017) Assessment of strain effect of strong-motion (focus) zones of earthquakes on earth’s surface displacement. Geod Geodyn 8:34–40

    Google Scholar 

  • Kuo T, Chen W, Ho C (2018) Anomalous decrease in groundwater radon before 2016 Mw 64 Meinong earthquake and its application in Taiwan. Appl Radiat Isot 136:68–72

    Google Scholar 

  • La Verde G, Roca V, Sabbarese C, Ambrosino F, Pugliese M (2018a) Correlation of the activity concentration of gas radon in environments located on ground floor and underground level. Nuovo Cimento C 41(6):219

    Google Scholar 

  • La Verde G, Roca V, Sabbarese C, Ambrosino F, Pugliese M (2018b) The equilibrium factor in the radon dose calculation in the archaeological site of Acquedotto Augusteo del Serino in Naples. Nuovo Cimento C 41(6):218

    Google Scholar 

  • Lin JW (2013) Ionospheric anomaly related to M = 6.6, 26 August 2012, Tobelo earthquake near Indonesia: two-dimensional principal component analysis. Acta Geod Geophys 48(3):247–264

    Google Scholar 

  • Marcoux M, Larocque G, Auger-Méthé M, Dutilleul P, Humphries MM (2010) Statistical analysis of animal observations and associated marks distributed in time using Ripley’s functions. Anim Behav 80(2):329–337

    Google Scholar 

  • Mjachkin VI, Brace WF, Sobolev GA, Dieterich JH (1975) Two models for earthquake forerunners. Pure Appl Geophys 113(1):169–181

    Google Scholar 

  • Papastefanou C (2010) Variation of radon flux along active fault zones in association with earthquake occurrence. Radiat Meas 45(8):943–951

    Google Scholar 

  • Razin MRG, Voosoghi B, Mohammadzadeh A (2016) Efficiency of artificial neural networks in map of total electron content over Iran. Acta Geod Geophys 51(3):541–555

    Google Scholar 

  • Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B Stat Methodol 39(2):172–192

    Google Scholar 

  • Roca V, De Felice P, Esposito AM, Pugliese M, Sabbarese C, Vaupotich J (2004) The influence of environmental parameters in electrostatic cell radon monitor response. Appl Radiat Isot 61:243–247

    Google Scholar 

  • Rodrigo-Naharro J, Quindós LS, Clemente-Jul C, Mohamud AH, Del Villar LP (2017) CO2 degassing from a Spanish natural analogue for CO2 storage and leakage: implications on 222Rn mobility. Appl Geochem 84:297–305

    Google Scholar 

  • Sabbarese C, Ambrosino F, Buompane R, Pugliese M, Roca V (2017a) Analysis of alpha particles spectra of the Radon and Thoron progenies generated by an electrostatic collection detector using new software. Appl Radiat Isot 122:180–185

    Google Scholar 

  • Sabbarese C, Ambrosino F, De Cicco F, Pugliese M, Quarto M, Roca V (2017b) Signal decomposition and analysis for the identification of periodic and anomalous phenomena in Radon time-series. Radiat Prot Dosim 177(1–2):202–206

    Google Scholar 

  • Schölkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New support vector algorithms. Neural Comput 12:1207–1245

    Google Scholar 

  • Shiuly A, Roy N (2018) A generalized VS–N correlation using various regression analysis and genetic algorithm. Acta Geod Geophys 53(3):479–502

    Google Scholar 

  • Stathopoulos C, Kaperoni A, Galanis G, Kallos G (2013) Wind power prediction based on numerical and statistical models. J Wind Eng Ind Aerodyn 112:25–38

    Google Scholar 

  • Stránský V, Thinová L (2017) Radon concentration time series modeling and application discussion. Radiat Prot Dosim 177(1–2):155–159

    Google Scholar 

  • Sun Q, Zhao C, Lü H (2016) Radon emission evolution and rock failure. Acta Geod Geophys 51(3):583–595

    Google Scholar 

  • Toutain JP, Baubron JC (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304(1–2):1–27

    Google Scholar 

  • Tsvetkova T, Przylibski TA, Nevinsky I, Nevinsky V (2005) Measurement of radon in the East Europe under the ground. Radiat Meas 40(1):98–105

    Google Scholar 

  • Tsvetkova T, Nevinsky I, Nevinsky V (2012) Measurements of soil radon in South Russia for seismological application: some results. Radiat Meas 47(4):292–302

    Google Scholar 

  • Virk HS, Walia V, Kumar N (2001) Helium/radon precursory anomalies of Chamoli earthquake, Garhwal Himalaya, India. J Geodyn 31(2):201–210

    Google Scholar 

  • Walia V, Virk HS, Bajwa SB (2006) Radon precursory signals for some earthquakes of magnitude > 5 occurred in N-W Himalaya: an overview. Pure Appl Geophys 163(4):711–721

    Google Scholar 

  • Wang X, Li Y, Du J, Zhou X (2014) Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China. Radiat Meas 60:8–14

    Google Scholar 

  • Wang J, Yang W, Du P, Li Y (2018) Research and application of a hybrid forecasting framework based onmulti-objective optimization for electrical power system. Energy J 148:59–78

    Google Scholar 

  • Yang J, Busen H, Scherb H, Hürkamp K, Guo Q, Tschiersch J (2019) Modeling of radon exhalation from soil influenced by environmental parameters. Sci Total Environ 656:1304–1311

    Google Scholar 

  • Zhang Z, Li B, Shen Y, Yang L (2017) A noise analysis method for GNSS signals of a standalone receiver. Acta Geod Geophys 52(3):301–316

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the caves and nearby meteo-station Administration of the Czechia, Slovenia and Slovakia for their unselfish cooperation. This work was supported by the Long-term conceptual development research organization [RVO: 67985891]; and the CzechGeo-EPOS project ‘Distributed system of permanent observatory measurements and temporary monitoring of geophysical fields in the Czech Republic’ [MŠMT: LM2015079]; and the project ‘Centre of Advanced Applied Sciences’ [CZ.02.1.01/0.0/0.0/16_0 19/0000778].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ambrosino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosino, F., Thinová, L., Briestenský, M. et al. Detecting time series anomalies using hybrid methods applied to Radon signals recorded in caves for possible correlation with earthquakes. Acta Geod Geophys 55, 405–420 (2020). https://doi.org/10.1007/s40328-020-00298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-020-00298-1

Keywords

Navigation