Skip to main content

Advertisement

Log in

Green Biosynthesis of Silver Nanoparticles from Olive and Walnut-Related Bacteria, Synthesis, Characterization, and Antimicrobial Activity

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Many studies have demonstrated the effectiveness of various plant extracts in the synthesis of silver nanoparticles. The phytochemical components of plant extracts contain biodegradable agents necessary for the stabilization and synthesis of nanoparticles. However, extracellular components of microorganisms have been shown to have similar activity in recent years. This study expects nanoparticle synthesis using silver nitrate using bacteria from different plant and soil parts in the Proteobacteria and Actinomycetes families in the endophytic and free form obtained from various sources, determining their antimicrobial properties on other pathogenic microorganisms. Nanoparticules showed a positive effect on antibiotic-resistant human pathogenic bacteria (Staphylococcus, Escherichia, and Acinetobacter), two strains of the human pathogenic Candida, and six different plant pathogenic fungi (Aspergillus, Fusarium, Gaeumannomyces, and Penicillium) compared to the reference antibiotics and antifungals. The physical forms and dimensions of the nanoparticles were determined by XRD, FTIR, UV–vis, and scanning electron microscopy. We believe that our findings will be the basis for the bacterial nanoparticle production procedures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

FTIR:

Fourier-transform infrared spectroscopy

NADH:

Nicotinamide adenine dinucleotide

AgNP/s:

Silver nanoparticle/s

Ag:

Silver

AgNO3 :

Silver nitrate

MHA:

Mueller Hinton agar

SDA:

Sabouraud dextrose agar

PDA:

Potato dextrose agar

PW:

Peptone water

ISP2:

International Streptomyces Project-2

LB:

Lennox L

MHB:

Mueller Hinton broth

NaCl:

Sodium chloride

References

  1. Gupta RK, Kumar V, Gundampati RK, Malviya M, Hasan SH, Jagannadham MV (2017) Biosynthesis of silver nanoparticles from the novel strain of Streptomyces Sp. BHUMBU-80 with highly efficient electroanalytical detection of hydrogen peroxide and antibacterial activity. J Environ Chem Eng 5:5624–5635. https://doi.org/10.1016/j.jece.2017.09.029

    Article  CAS  Google Scholar 

  2. Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70. https://doi.org/10.1155/2009/734264

    Article  CAS  Google Scholar 

  3. Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601. https://doi.org/10.1016/j.drudis.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V et al (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. https://doi.org/10.1088/0957-4484/14/7/323

    Article  Google Scholar 

  5. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593. https://doi.org/10.1007/s00253-015-6622-1

    Article  CAS  PubMed  Google Scholar 

  6. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614. https://doi.org/10.1073/pnas.96.24.13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vijayakumar M, Priya K, Nancy FTT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod 41:235–240. https://doi.org/10.1016/j.indcrop.2012.04.017

    Article  CAS  Google Scholar 

  8. Hussain NS, Harun NA, Mohd Naim Fadhli MRII, Ismail WIW (2018) Biosynthsis of silver nanoparticle from marine polychaete Diopatra claparedii Grube, 1878. J Teknol 80:181–187

    Google Scholar 

  9. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32. https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  10. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. https://doi.org/10.1016/j.cis.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  11. Bennett JA, Mikheenko IPP, Deplanche K, Shannon IJJ, Wood J, Macaskie LEE (2013) Nanoparticles of palladium supported on bacterial biomass: new re-usable heterogeneous catalyst with comparable activity to homogeneous colloidal Pd in the Heck reaction. Appl Catal B Environ 140–141:700–707. https://doi.org/10.1016/j.apcatb.2013.04.022

    Article  CAS  Google Scholar 

  12. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M et al (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater 2015:1–8. https://doi.org/10.1155/2015/720654

    Article  CAS  Google Scholar 

  13. Gottenbos B, Van Der Mei HC, Klatter F, Grijpma DW, Feijen J, Nieuwenhuis P et al (2003) Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials 24:2707–2710. https://doi.org/10.1016/S0142-9612(03)00083-8

    Article  CAS  PubMed  Google Scholar 

  14. Magaldi S, Mata-Essayag S, Hartung de Capriles C, Perez C, Colella M, Olaizola C et al (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8:39–45. https://doi.org/10.1016/j.ijid.2003.03.002

    Article  CAS  PubMed  Google Scholar 

  15. Sobczak-Kupiec A, Malina D, Wzorek Z, Zimowska M (2011) Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro Nano Lett 6:656–660. https://doi.org/10.1049/mnl.2011.0152

    Article  CAS  Google Scholar 

  16. Bamsaoud SF, Basuliman MM, Bin-Hameed EA, Balakhm SM, Alkalali AS (2021) The effect of volume and concentration of AgNO3 aqueous solutions on silver nanoparticles synthesized using Ziziphus Spina-Christi leaf extract and their antibacterial activity. J Phys Conf Ser 1900:012005. https://doi.org/10.1088/1742-6596/1900/1/012005

    Article  CAS  Google Scholar 

  17. Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem 9:1415–1422. https://doi.org/10.1002/cbic.200700592

    Article  CAS  PubMed  Google Scholar 

  18. Guerrero DS, Bertani RP, Ledesma A, Frías M de los A, Romero CM, Dávila Costa JS (2022) Silver nanoparticles synthesized by the heavy metal resistant strain Amycolatopsis tucumanensis and its application in controlling red strip disease in sugarcane. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e09472

    Article  PubMed  PubMed Central  Google Scholar 

  19. Strojan K, Leonardi A, Bregar VB, Križaj I, Svete J, Pavlin M (2017) Dispersion of nanoparticles in different media importantly determines the composition of their protein corona. PLoS ONE 12:1–21. https://doi.org/10.1371/journal.pone.0169552

    Article  CAS  Google Scholar 

  20. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–23. https://doi.org/10.1016/j.procbio.2007.02.005

    Article  CAS  Google Scholar 

  21. Khan BF, Hamidullah DS, Konwar R, Zubair S, Owais M (2019) Potential of bacterial culture media in biofabrication of metal nanoparticles and the therapeutic potential of the as-synthesized nanoparticles in conjunction with artemisinin against MDA-MB-231 breast cancer cells. J Cell Physiol 234:6951–64. https://doi.org/10.1002/jcp.27438

    Article  CAS  PubMed  Google Scholar 

  22. Pinto VV, Ferreira MJ, Silva R, Santos HA, Silva F, Pereira CM (2010) Long time effect on the stability of silver nanoparticles in aqueous medium: effect of the synthesis and storage conditions. Colloids Surf A Physicochem Eng Asp 364:19–25. https://doi.org/10.1016/j.colsurfa.2010.04.015

    Article  CAS  Google Scholar 

  23. Dede A, Güven K (2023) Plant growth-promoting of olive and walnut actinobacteria: isolation, screening PGP traits, antifungal activities, identification, and hydroponic production of wheat. Arch Agron Soil Sci 69:1343–1358. https://doi.org/10.1080/03650340.2022.2086233

    Article  CAS  Google Scholar 

  24. Dede A, Güven K, Şahi̇n N (2020) Isolation, plant growth-promoting traits, antagonistic effects on clinical and plant pathogenic organisms and identification of actinomycetes from olive rhizosphere. Microb Pathog 143:104134. https://doi.org/10.1016/j.micpath.2020.104134

    Article  CAS  PubMed  Google Scholar 

  25. Htwe YZN, Chow WS, Suda Y, Mariatti M (2019) Effect of silver nitrate concentration on the production of silver nanoparticles by green method. Mater Today Proc 17:568–573. https://doi.org/10.1016/j.matpr.2019.06.336

    Article  CAS  Google Scholar 

  26. Kim M, Jee SC, Shinde SK, Mistry BM, Saratale RG, Saratale GD et al (2019) Green-synthesis of anisotropic peptone-silver nanoparticles and its potential application as anti-bacterial agent. Polymers (Basel) 11:10–15. https://doi.org/10.3390/polym11020271

    Article  CAS  Google Scholar 

  27. Allaka G, Luther MF, Yepuri V, Narayana RL (2023) Synthesis of silver oxide nanoparticles using gomutra mediation and their investigations on anti-oxidant property. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.06.086

    Article  Google Scholar 

  28. Edison TJI, Sethuraman MG (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47:1351–1357. https://doi.org/10.1016/j.procbio.2012.04.025

    Article  CAS  Google Scholar 

  29. Babu MS, Mandal BK, Maddili SK (2017) Biofabrication of size controllable silver nanoparticles: a green approach. J Photochem Photobiol B Biol 167:236–241. https://doi.org/10.1016/j.jphotobiol.2017.01.003

    Article  CAS  Google Scholar 

  30. Anthony KJP, Murugan M, Gurunathan S (2014) Biosynthesis of silver nanoparticles from the culture supernatant of Bacillus marisflavi and their potential antibacterial activity. J Ind Eng Chem 20:1505–1510. https://doi.org/10.1016/j.jiec.2013.07.039

    Article  CAS  Google Scholar 

  31. Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces 81:358–362. https://doi.org/10.1016/j.colsurfb.2010.07.036

    Article  CAS  PubMed  Google Scholar 

  32. Punjabi K, Yedurkar S, Doshi S, Deshapnde S, Vaidya S (2017) Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry. IET Nanobiotechnology 11:584–90. https://doi.org/10.1049/iet-nbt.2016.0172

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dede A (2020) Bitki Büyüme Düzenleyici Aktinomisetler: İzolasyon, Tanı Ve Kullanım Özellikleri. Eskişehir Teknik Üniversitesi

Download references

Acknowledgements

This study was partly supported by Eskisehir Technical University, The Scientific Research Projects, BAP: 19ADP067.

Author information

Authors and Affiliations

Authors

Contributions

AD and KG planned the project and experiment designs. AD took part in all performed experiments, data arrangements, drafting of the manuscript, and writing processes. MTAA also planned and conducted nanoparticle characterization-related experiments. MTAA and KG checked and corrected the writing processes.

Corresponding author

Correspondence to Alper Dede.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 123 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dede, A., Aytekin-Aydin, M.T. & Güven, K. Green Biosynthesis of Silver Nanoparticles from Olive and Walnut-Related Bacteria, Synthesis, Characterization, and Antimicrobial Activity. Indian J Microbiol 63, 658–667 (2023). https://doi.org/10.1007/s12088-023-01127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01127-z

Keywords

Navigation