Skip to main content
Log in

The Impact of Metal Nanoparticles on the Immunoregulatory and Therapeutic Properties of Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Negative impacts of nanomaterials on stem cells and cells of the immune system are one of the main causes of an impaired or slowed tissue healing. Therefore, we tested effects of four selected types of metal nanoparticles (NPs): zinc oxide (ZnO), copper oxide (CuO), silver (Ag), and titanium dioxide (TiO2) on the metabolic activity and secretory potential of mouse mesenchymal stem cells (MSCs), and on the ability of MSCs to stimulate production of cytokines and growth factors by macrophages. Individual types of nanoparticles differed in the ability to inhibit metabolic activity, and significantly decreased the production of cytokines and growth factors (interleukin-6, vascular endothelial growth factor, hepatocyte growth factor, insulin-like growth factor-1) by MSCs, with the strongest inhibitory effect of CuO NPs and the least effect of TiO2 NPs. The recent studies indicate that immunomodulatory and therapeutic effects of transplanted MSCs are mediated by macrophages engulfing apoptotic MSCs. We co-cultivated macrophages with heat-inactivated MSCs which were untreated or were preincubated with the highest nontoxic concentrations of metal NPs, and the secretory activity of macrophages was determined. Macrophages cultivated in the presence of both untreated MSCs or MSCs preincubated with NPs produced significantly enhanced and comparable levels of various cytokines and growth factors. These results suggest that metal nanoparticles inhibit therapeutic properties of MSCs by a direct negative effect on their secretory activity, but MSCs cultivated in the presence of metal NPs have preserved the ability to stimulate cytokine and growth factor production by macrophages.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that all data and materials support the published claims and comply with field standards.

Code Availability

Not applicable.

References

  1. Lewinski, N., Colvin, V., & Drezek, R. (2008). Cytotoxicity of nanoparticles. Small, 4, 26–49.

    Article  CAS  PubMed  Google Scholar 

  2. Huang, Y. W., Cambre, M., & Lee, H. J. (2017). The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. International Journal of Molecular Sciences, 18, 2702.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu, X., Yang, Z., Sun, J., Ma, T., Hua, F., & Shen, Z. (2019). A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. International Journal of Nanomedicine, 14, 3875–3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pandey, A., Malek, V., Prabhakar, V., Kulkarni, Y. A., & Gaikwad, A. B. (2015). Nanoparticles: A neurotoxicological perspective. CNS and Neurological Disorders - Drug Targets, 14, 1317–1327.

    Article  CAS  PubMed  Google Scholar 

  5. Lu, X., Miousse, I. R., Pirela, S. V., Melnyk, S., Koturbash, I., & Demokritou, P. (2016). Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology, 10, 40–150.

    Google Scholar 

  6. Rossner, P., Jr, Vrbova, K., Strapacova, S., Rossnerova, A., Ambroz, A., Brzicova, T., et al. (2019). Inhalation of ZnO nanoparticles: splice junction expression and alternative splicing in mice. Toxicological Sciences, 168, 190–200.

    Article  CAS  PubMed  Google Scholar 

  7. Petrarca, C., Clemente, E., Amato, V., Pedata, P., Sabbioni, E., & Bernardinic, G. (2015). etal. Engineered metal-based nanoparticles and innate immunity. Clinical and Molecular Allergy, 13. https://doi.org/10.1186/s12948-015-0020-1

  8. Dobrovolskaia, M. A., Shurin, M., & Shvedova, A. A. (2016). Current understanding of interactions between nanoparticles and the immune system. Toxicology and Applied Pharmacology, 299, 78–89.

    Article  CAS  PubMed  Google Scholar 

  9. Holan, V., Javorkova, E., Vrbova, K., Vecera, Z., Mikuska, P., Coufalik, P., et al. (2019). A murine model of the effects of inhaled CuO nanoparticles on cells of innate and adaptive immunity - a kinetic study of a continuous three-month exposure. Nanotoxicology, 13, 952–963.

    Article  CAS  PubMed  Google Scholar 

  10. Rajanahalli, P., Stucke, C. J., & Hong, Y. (2015). The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation. Toxicology Reports, 2, 758–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Senut, M., Zhang, C., Liu, Y., Sen, F., Ruden, A., & Mao, D. M. (2016). Size-dependent toxicity of gold nanoparticles on human embryonic stem cells and their neural derivatives. Small, 12, 631–646.

    Article  CAS  PubMed  Google Scholar 

  12. Gao, X., Topping, V. D., Keltner, Z., Sprando, R. L., & Yourick, J. J. (2017). Toxicity of nano- and ionic silver to embryonic stem cells: a comparative toxicogenomic study. Journal of Nanobiotechnology, 15(1), 31.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Park, M. V., Annema, W., Salvati, A., Lesniak, A., Elsaesser, A., & Barnes, C. (2009). Vitro. Toxicology and Applied Pharmacology, 240, 108–116.

    Article  CAS  PubMed  Google Scholar 

  14. Bregoli, L., Chiarini, F., Gambarelli, A., Sighinolfi, G., Gatti, A. M., Santi, P., et al. (2009). Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology, 262, 121–129.

    Article  CAS  PubMed  Google Scholar 

  15. Hou, Y., Cai, K., Li, J., Chen, X., Lai, M., Hu, Y., et al. (2013). Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. International Journal of Nanomedicine, 8, 3619–3630.

  16. Orazizadeh, M., Khodadadi, A., Bayati, V., Saremy, S., Farasat, M., & Khorsandi, L. (2015). In vitro toxic effects of zinc oxide nanoparticles on rat adipose tissue-derived mesenchymal stem cells. Cell Journal, 17, 412–421.

    PubMed  PubMed Central  Google Scholar 

  17. Sengstock, C., Diendorf, J., Epple, M., Schildhauer, T. A., & Köller, M. (2014). Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein Journal of Nanotechnology, 5, 2058–2069.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lykov, A. P., Lykova, Y. A., Poveshchenko, O. V., Bondarenko, N. A., Surovtseva, M. A., & Bgatova, N. P. (2017). Toxic effects of nanostructured silicon dioxide on multipotent mesenchymal stromal cells. Bulletin of Experimental Biology and Medicine, 163, 159–162.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, R., Lee, P., Lui, V. C., Chen, Y., Liu, X., Lok, C. N., et al. (2015). Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine: The Official Journal of the American Academy of Nanomedicine, 11, 1949–1959.

    Article  CAS  Google Scholar 

  20. Yi, C., Liu, D., Fong, C. C., Zhang, J., & Yang, M. (2010). Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. Acs Nano, 4, 6439–6448.

    Article  CAS  PubMed  Google Scholar 

  21. Qin, H., Zhu, C., An, Z., Jiang, Y., Zhao, Y., & Wang, J. (2014). International Journal of Nanomedicine, 9, 2469–2478.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang, X. F., Shen, W., & Gurunathan, S. (2016). Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. International Journal of Molecular Sciences, 17(10), 1603.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abumaree, M., Jumah, M. A., Pace, R. A., & Kalionis, B. (2012). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews and Reports, 8, 375–392.

    Article  CAS  PubMed  Google Scholar 

  24. Han, Y., Li, X., Zhang, Y., Han, Y., Chang, F., & Ding, J. (2019). Mesenchymal stem cells for regenerative medicine. Cells, 8(8), 886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Witte, S. F. H., Luk, F., Sierra Parraga, J. M., Merino, A., Korevaar, M. A., Shankar, A. S., et al. (2018). Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells, 36, 602–615.

    Article  PubMed  Google Scholar 

  26. Preda, M. B., Neculachi, C. A., Fenyo, I. M., Vacaru, A. M., Publik, M. A., & Simionescu, M. (2021). Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death and Disease, 12, 566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brzicova, T., Javorkova, E., Vrbova, K., Zajicova, A., Holan, V., Pinkas, D., et al. (2019). Molecular responses in THP-1 macrophage-like cells exposed to diverse nanoparticles. Nanomaterials (Basel), 9(5), 687.

    Article  CAS  PubMed  Google Scholar 

  28. Remzova, M., Zouzelka, R., Brzicova, T., Vrbova, K., Pinkas, D., Rossner, P., et al. (2019). Toxicity of TiO2, ZnO, and SiO2 nanoparticles in human lung cells: safe-by-design development of construction materials. Nanomaterials (Basel), 9(7), 687.

  29. Hajkova, M., Javorkova, E., Zajicova, A., Trosan, P., Holan, V., & Krulova, M. (2017). A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. Journal of Tissue Engeneering and Regenerative Medicine, 11, 1456–1465.

  30. Holan, V., Echalar, B., Palacka, K., Kossl, J., Bohacova, P., Krulova, M. et al. (2021). The altered migration and distribution of systemically administered mesenchymal stem cells in morphine-treated recipients. Stem Cell Reviews and Reports, 17, 1420–1428.

  31. Holan, V., Cechova, K., Zajicova, A., Kossl, J., Hermankova, B., Bohacova, P., et al. (2018). The impact of morphine on the characteristics and function properties of human mesenchymal stem cells. Stem Cell Reviews and Reports, 14, 801–811.

    Article  CAS  PubMed  Google Scholar 

  32. Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., & Kahru, A. (2013). Archives of Toxicology, 87, 1181–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Solano, R., Patiño-Ruiz, D., Tejeda-Benitez, L., & Herrera, A. (2021). Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. Environmental Sciences and Pollution Research, 28, 16962–16981.

    Article  CAS  Google Scholar 

  34. Li, H., Shen, S., Fu, H., Wang, Z., Lim, X., Sui, X., et al. (2019). Immunomodulatory functions of mesenchymal stem cells in tissue engineering. Stem Cells International, 19, 9671206.

    Google Scholar 

  35. Fan, X. L., Zhang, Y., Li, X., & Fu, Q. L. (2020). Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cellular and Molecular Life Sciences, 77, 2771–2794.

  36. Karlsson, H., Cronholmm, P., Gustafsson, J., & Möller, L. (2008). Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21, 1726–1732.

    Article  CAS  PubMed  Google Scholar 

  37. Moschini, E., Maurizio Gualtieri, M., Colombo, M., Fascio, U., Camatini, M., & Mantecca, P. (2013). The modality of cell-particle interactions drives the toxicity of nanosized CuO and TiO2 in human alveolar epithelial cells. Toxicology Letters, 222, 102–116.

    Article  CAS  PubMed  Google Scholar 

  38. Tolliver, L. M., Holl, N. J., Hou, F. Y. S., Lee, H. J., Cambre, M. H., & Huang, Y. W. (2020). Differential cytotoxicity induced by transition metal oxide nanoparticles is a function of cell killing and suppression of cell proliferation. International Journal of Molecular Sciences, 21(5), 1731.

  39. Dayem, A. A., Lee, S. B., & Cho, S. G. (2018). The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials (Basel), 8(10), 761.

    Article  Google Scholar 

  40. Han, Y., Yang, J., Fang, J., Zhou, Y., Candi, E., Wang, J., et al. (2022). The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduction and Targeted Therapy, 7(1), 92.

    Article  Google Scholar 

  41. Holan, V., Echalar, B., Palacka, K., Kossl, J., Bohacova, P., Porubska, B. et al. (2022). The inability of ex vivo expanded mesenchymal stem/stromal cells to survive in newborn mice and to induce transplantation tolerance. Stem Cell Reviews and Reports, 18(7), 2365–2375.

  42. Eggenhofer, E., Benseler, V., Kroemer, A., Popp, F. C., Geissler, E. K., Schlitt, H. J., et al. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 3, 297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grant No. 21-17720S from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

V.H., P.R. – concept of the study, data analysis, manuscript preparation, T.C. – preparation of nanoparticle stock solutions, A.Z.- cytokine production and detection, E.J. - flow cytometry, B.H. - gene expression, B.E., K.P.- isolation and cultivation of cells. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vladimir Holan.

Ethics declarations

This study did not involve human participants. The experiments with animals were approved by the local Animal Ethics Committee of the Institute of Experimental Medicine of the Czech Academy of Sciences, Prague.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holan, V., Cervena, T., Zajicova, A. et al. The Impact of Metal Nanoparticles on the Immunoregulatory and Therapeutic Properties of Mesenchymal Stem Cells. Stem Cell Rev and Rep 19, 1360–1369 (2023). https://doi.org/10.1007/s12015-022-10500-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10500-2

Keywords

Navigation