Skip to main content

Advertisement

Log in

Processing of Long Ti-15Mo Alloy Rods by Upscaling the Field-Assisted Sintering Technique

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The field-Assisted sintering technique (FAST), also known as spark plasma sintering, is a fast consolidation powder metallurgy technique for conductive and non-conductive materials. However, FAST is commonly used for the manufacture of small specimens. The present work presents the feasibility of sintering larger rods of a biomedical Ti-15Mo alloy using FAST. By implementing an adequate die arrangement, long rods of nearly 80 mm in length and 15 mm in diameter were sintered in less than 30 min with a densification above 95%. Power consumption to produce larger samples is compared with that for typical small-processed specimens. However, microstructural features appeared due to the pressure and temperature distributions, inherent to the technique. The results highlight the opportunities and drawbacks of using FAST for the consolidation of larger specimens, while the microstructural and mechanical performance of the as-sintered and post-processed Ti-15Mo rods are given and compared to a conventionally prepared alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. F. H. Froes, in Titanium in Medical and Dental Applications (Elsevier, 2018), pp. 3–21.

  2. G. Lütjering and J.C. Williams, Titanium (Springer, Berlin, 2007).

    Google Scholar 

  3. M. Qian and F. H. Sam Froes, Titanium Powder Metallurgy (Elsevier, 2015).

  4. J. Stráský, M. Janeček, I. Semenova, J. Čížek, K. Bartha, P. Harcuba, V. Polyakova, and S. Gatina, in Titanium in Medical and Dental Applications (Elsevier, 2018), pp. 455–475.

  5. P.C. Angelo and R. Subramanian, Powder Metallurgy: Science, Technology and Applications (Eastern Economy Ed., 2008).

  6. Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Int. Mater. Rev. 63, 407 (2018).

    Article  Google Scholar 

  7. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, Adv. Eng. Mater. 16, 830 (2014).

    Article  Google Scholar 

  8. M. Tokita, Ceramics 4, 160 (2021).

    Article  Google Scholar 

  9. N.S. Weston, F. Derguti, A. Tudball, and M. Jackson, J. Mater. Sci. 50, 4860 (2015).

    Article  Google Scholar 

  10. J. Kozlík, D. Preisler, J. Stráský, T. Košutová, C.A. Corrêa, J. Veselý, L. Bodnárová, F. Lukáč, T. Chráska, and M. Janeček, J. Alloys Compd. 905, 164259 (2022).

    Article  Google Scholar 

  11. Z.A. Munir and M. Ohyanagi, J. Mater. Sci. 56, 1 (2021).

    Article  Google Scholar 

  12. A. Lall, P. Bowen, and A. Rabiei, Mater. Charact. 184, 111614 (2022).

    Article  Google Scholar 

  13. A. Veverková, J. Kozlík, K. Bartha, T. Košutová, C.A. Correa, H. Becker, T. Chráska, M. Janeček, and J. Stráský, Mater. Charact. 171, 110762 (2021).

    Article  Google Scholar 

  14. M. Tokita, Mater. Sci. Forum 308–311, 83 (1999).

    Article  Google Scholar 

  15. K. Morsi, A. El-Desouky, B. Johnson, A. Mar, and S. Lanka, Scr. Mater. 61, 395 (2009).

    Article  Google Scholar 

  16. R. Hallett, J.R. Cox, and K. Morsi, Metall. Mater. Trans. B 51, 1363 (2020).

    Article  Google Scholar 

  17. S.B. Alemán-Córdova, L. Ceja-Cárdenas, J.C. Méndez-García, and S. Díaz-de la Torre, Ceram. Int. 47, 7966 (2021).

    Article  Google Scholar 

  18. L. Čelko, M. Menelaou, M. Casas-Luna, M. Horynová, T. Musálek, M. Remešová, S. Díaz-de-la-Torre, K. Morsi, and J. Kaiser, Metall. Mater. Trans. B 50, 656 (2019).

    Article  Google Scholar 

  19. E. Novitskaya, T.A. Esquivel-Castro, G.R. Dieguez-Trejo, A. Kritsuk, J.T. Cahill, S. Díaz-de-la-Torre, and O.A. Graeve, Mater. Sci. Eng. A 717, 62 (2018).

    Article  Google Scholar 

  20. X. Wei, O. Izhvanov, C. Back, C.D. Haines, D.G. Martin, K.S. Vecchio, and E.A. Olevsky, J. Am. Ceram. Soc. 102, 548 (2019).

    Article  Google Scholar 

  21. T. Voisin, L. Durand, N. Karnatak, S. le Gallet, M. Thomas, Y. le Berre, J.-F. Castagné, and A. Couret, J. Mater. Process. Technol. 213, 269 (2013).

    Article  Google Scholar 

  22. C. Manière, E. Torresani, and E. Olevsky, Materials 12, 557 (2019).

    Article  Google Scholar 

  23. J. Kozlík, D. Preisler, M. Haasová, J. Stráský, T. Chráska, and M. Janeček, Metall. Mater. Trans. A 54, 2703 (2023).

    Article  Google Scholar 

  24. U. Anselmi-Tamburini, S. Gennari, J.E. Garay, and Z.A. Munir, Mater. Sci. Eng. A 394, 139 (2005).

    Article  Google Scholar 

  25. B. McWilliams, J. Yu, and A. Zavaliangos, J. Mater. Sci. 50, 519 (2015).

    Article  Google Scholar 

  26. A.M. Laptev, M. Bram, K. Vanmeensel, J. Gonzalez-Julian, and O. Guillon, J. Mater. Process. Technol. 262, 326 (2018).

    Article  Google Scholar 

  27. C. Manière, G. Lee, J. McKittrick, and E.A. Olevsky, J. Am. Ceram. Soc. 102, 706 (2019).

    Article  Google Scholar 

  28. J. Kozlík, H. Becker, J. Stráský, P. Harcuba, and M. Janeček, Mater. Sci. Eng. A 772, 138783 (2020).

    Article  Google Scholar 

  29. M. Suarez, A. Fernandez, J. L. Menendez, R. Torrecillas, H. U., J. Hennicke, R. Kirchner, and T. Kessel, in Sintering Applications (InTech, 2013).

  30. H. U. Kessel, J. Hennicke, J. Schmidt, T. Weißgärber, B. F. Kieback, M. Herrmann, and J. Räthel, in Pulvermetallurgie in Wissenschaft Und Praxis 22, Heimdall Verlag (Witten, Germay, 2008).

  31. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  32. C. Manière, G. Lee, and E.A. Olevsky, Sci. Rep. 7, 15071 (2017).

    Article  Google Scholar 

  33. B. Román-Manso, M. Belmonte, M.I. Osendi, and P. Miranzo, J. Am. Ceram. Soc. 98, 2745 (2015).

    Article  Google Scholar 

  34. G. Lee, C. Manière, J. McKittrick, and E.A. Olevsky, Scr. Mater. 170, 90 (2019).

    Article  Google Scholar 

  35. J. Cinert, Study of Mechanisms of the Spark Plasma Sintering Technique, Doctoral Thesis, Czech Technical University in Prague, 2018.

  36. Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, and S.-L. Li, Mater. Des. 191, 108662 (2020).

    Article  Google Scholar 

  37. J. Diatta, G. Antou, N. Pradeilles, and A. Maître, J. Eur. Ceram. Soc. 37, 4849 (2017).

    Article  Google Scholar 

  38. C. Wang, L. Cheng, and Z. Zhao, Comput. Mater. Sci. 49, 351 (2010).

    Article  Google Scholar 

  39. N.S. Weston and M. Jackson, J. Mater. Process. Technol. 243, 335 (2017).

    Article  Google Scholar 

  40. E. Calvert, B. Wynne, N. Weston, A. Tudball, and M. Jackson, J. Mater. Process. Technol. 254, 158 (2018).

    Article  Google Scholar 

  41. J. Šmilauerová, M. Janeček, P. Harcuba, J. Stráský, J. Veselý, R. Kužel, and H.J. Rack, J. Alloys Compd. 724, 373 (2017).

    Article  Google Scholar 

  42. O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, and C.H. Ward, Mater. Sci. Eng. A 405, 296 (2005).

    Article  Google Scholar 

  43. K.D. Zilnyk, G.S. Leite, H.R.Z. Sandim, and P.R. Rios, Acta Mater. 61, 5821 (2013).

    Article  Google Scholar 

  44. I. Weiss and S.L. Semiatin, Mater. Sci. Eng. A 243, 46 (1998).

    Article  Google Scholar 

  45. M. Li and X. Min, Sci. Rep. 10, 8664 (2020).

    Article  Google Scholar 

  46. J. Ballor, T. Li, F. Prima, C. J. Boehlert, and A. Devaraj, Int. Mater. Rev., 1 (2022).

  47. T. Xu, S. Zhang, S. Liang, N. Cui, L. Cao, and Y. Wan, Sci. Rep. 9, 17628 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Czech Science Foundation under the Project 21-18652M. The students D.P., J.K., and A.V acknowledge the financial support by the Grant Agency of Charles University Project No. START/SCI/085. Especial gratitude to Dr. Lukáš Horák for the help with the XRD measurements at the MGML facilities (mgml.eu, supported within the program of Czech Research Infrastructures under the Project No. LM2023065).

Author information

Authors and Affiliations

Authors

Contributions

A.V.: Methodology, Investigation, Data curation, Formal analysis, Writing—original draft. J.S.: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Writing—review & editing. D.P.: Data curation, Formal analysis, Investigation, Methodology, Writing—review & editing. J.K.: Data curation, Formal analysis, Methodology, Writing—review & editing. T.C.: Methodology, Resources, Validation. F.L.: Methodology, Resources, Validation. M.C.-L.: Data curation, Formal analysis, Writing—review & editing. M.J.: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Writing—review & editing.

Corresponding author

Correspondence to M. Casas-Luna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data and Code Availability

The authors confirm that all data that support the findings of this study are available within the article. Raw data were generated at the authors’ affiliations, and derived information is available from the corresponding author M.C.-L. on request.

Ethical Approval

‘Not applicable’, because this research does not contain any studies with humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veverková, A., Stráský, J., Preisler, D. et al. Processing of Long Ti-15Mo Alloy Rods by Upscaling the Field-Assisted Sintering Technique. JOM 75, 5847–5858 (2023). https://doi.org/10.1007/s11837-023-06191-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06191-w

Navigation