Skip to main content

Advertisement

Log in

Physiological and spectroscopical changes of the thermophilic cyanobacterium Synechococcus elongatus under iron stress and recovery culture

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The iron in cyanobacterial cells contributes to energy conversion via electron transport chains, so its availability directly influences all metabolic pathways. Besides exploring cell adaptations and changes occurring with iron insufficient stress, the present work examines profoundly for the first time the metabolic changes accompanied with iron recovery for the thermophilic cyanobacterium Synechococcus elongatus (Näg., var. thermalis Geitl. Strain Kovrov 1972/8). S. elongatus cells were cultivated on two iron deprivation levels, iron-limited (45 nM Fe) and iron-deficient (4.5 nM Fe). Growth, carotenoids/Chlorophyll-a (Car/Chl-a) ratio, transmitting electron images, pigments fractionation analysis, and cell activity were checked. The obtained results demonstrated an astounding decrease in Chl-a content, an increment in β-carotene content, leading to rising the Car/Chl-a ratio, a reduction of phycobilins content, a reduction in cell diameters, a decrease of energy transfer, a depletion of the electron transport chain, and a reduction of photosynthesis and respiration processes under inadequate iron condition. Likewise, the photochemical activity of photosystem II (PSII), determined by Fv/Fm ratio and thermoluminescence estimations, demonstrated that PSII was disabled under iron pressure. With iron recovery by 200 nM Fe, cells regained full metabolic activity within 24 h. Despite the fact that photosynthesis and respiration activity exhibited nearly a similar behavior, S. elongatus under iron-deficiency began to recuperate the activity of the photosynthetic apparatus quicker than the respiratory machinery by regaining their pigment content and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrizhiyevskaya EG, Schwabe TME, Germano M, D’Haene S, Kruip J, van Grondelle R, Dekker JP (2002) Spectroscopic properties of PS I-IsiA supercomplexes of the cyanobacterium Synechococcus PCC 7942. Biochim Biophys Acta 1556:265–272

    Article  CAS  PubMed  Google Scholar 

  • Beneṧová J, Nickova K, Ferimazova N, Stys D (2000) Morphological and physiological differences in Synechococcus elongatus during continuous cultivation at high iron, low iron, and iron deficient medium. Photosynthetica 38:233–241

    Article  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK, Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412(6848):745–748

    Article  CAS  PubMed  Google Scholar 

  • Brand LE (1991) Minimum iron requirements of marine phytoplankton and the implications of the biogeochemical control of new production. Limnol Oceanogr 36:1756–1771

    Article  Google Scholar 

  • Devadasu ER, Madireddi SK, Nama S, Subramanyam R (2016) Iron deficiency cause changes in photochemistry, thylakoid organization, and accumulation of photosystem II proteins in Chlamydomonas reinhardtii. Photosynth Res 130(1–3):469–478

    Article  CAS  PubMed  Google Scholar 

  • Devadasu E, Chinthapalli DK, Chouhan N, Madireddi SK, Rasineni GK, Sripadi P, Subramanyam R (2019) Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency. Photosynth Res 139:253–266

    Article  CAS  PubMed  Google Scholar 

  • El-Mohsnawy E (2013) Ultra-structural adaptation toward iron deficiency in Thermosynechococcus elongatus cells. J Am Sci 9(12s):86–92

    Google Scholar 

  • El-Mohsnawy E, Kopczak MJ, Schlodder E, Nowaczyk M, Meyer HE, Warscheid B, Karapetyan NV, Rögner M (2010) Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 49(23):4740–4751

    Article  CAS  PubMed  Google Scholar 

  • Ferreira F, Straus NA (1994) Iron deprivation in cyanobacteria. J Appl Phycol 6:199–210

    Article  CAS  Google Scholar 

  • Fork DC, Mohanty P (1986) Fluorescence and other characteristics of blue green algae (cyanobacteria), red algae and cryptomonads. In: Govindjee AJ, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 451–496

    Chapter  Google Scholar 

  • Geider RJ, La Roche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth Res 39:275–301

    Article  CAS  PubMed  Google Scholar 

  • Govindjee, Shevela D (2011) Adventures with cyanobacteria: a personal perspective. Front Plant Sci 2:1–17

    Article  CAS  Google Scholar 

  • Grondelle RV, Dekker JP, Gillbro T, Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65

    Article  CAS  Google Scholar 

  • Haniewicz P, Abram M, Nosek L, Kirkpatrick J, El-Mohsnawy E, Olmos JDJ, Kouril R, Kargula JM (2018) Molecular mechanisms of photoadaptation of photosystem I supercomplex from an evolutionary cyanobacterial/algal intermediate. Plant Physiol 176:1433–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henley WJ, Yin Y (1988) Growth and photosynthesis of marine Synechococcus (cyanobacteria) under iron stress. J Phycol 34:94–103

    Article  Google Scholar 

  • Hideg É, Vass I (1992) The high temperature thermoluminescence band of green tissues originates in the chemiluminescence of chlorophyll promoted by free radicals. In: Murata N (ed) Research in photosynthesis, vol III. Kluwer Academic Publishers, Dordrecht, pp 107–110

    Chapter  Google Scholar 

  • Ivanov A, Park Y, Miskiewicz E, Raven A, Huner NP, Oquist G (2000) Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp. PCC 7942. FEBS Lett 485(2–3):173–177

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AG, Krol M, Sveshnikov D, Selstman E, Sandström S, Bruce D, Öquist G, Huner NPA (2006) Iron deficiency causes monomerization of photosystem I trimers and reduces the capacity for state for state transitions and the effective absorption cross section of photosystem I in vivo. Plant Physiol 141:1436–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov A, Krol M, Selstam E, Vishnu Sane P, Sveshnikov D, Park Y, Öquist G, Huner NPA (2007) The induction of CP43′ by iron-stress in Synechococcus sp. PCC 7942 is associated with carotenoid accumulation and enhanced fatty acid unsaturation. Biochim Biophys Acta 1767:807–813

    Article  CAS  PubMed  Google Scholar 

  • Karapetyan NV (2008) Protective dissipation of excess absorbed energy by photosynthetic apparatus of cyanobacteria: role of antenna terminal emitters. Photosynth Res 97:195–204

    Article  CAS  PubMed  Google Scholar 

  • Lardans A, Forster B, Prasil O, Falkowski PG, Sobolev V, Edelmna M, Osmond CB, Gillham NW, Boynton JE (1998) Biophysical, biochemical and physiological characterization of Chlamydomonas reinhardtii mutants with amino acid substitutions of the Ala251 residue in the D1 protein that result in varying levels of photosynthetic competence. J Biol Chem 273:11082–11091

    Article  CAS  PubMed  Google Scholar 

  • Latif A, Jean Jean R, Lameille S, Havaux M, Zhang CC (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 18:6596–6598

    Article  CAS  Google Scholar 

  • Lax J, Arteni A, Boekema E, Pistorius E, Michel K, Rögner M (2007) Structural response of photosystem 2 to iron deficiency: characterization of a new photosystem 2–IdiA complex from the cyanobacterium Thermosynechococcus elongatus BP-1. Biochim Biophys Acta 1767:528–534

    Article  CAS  PubMed  Google Scholar 

  • Liaaen S, Jensen A (1971) Quantitative determination of carotenoids in photosynthetic tissues. Methods Enzymol 23A:586–602

    Article  Google Scholar 

  • Lupinkova L, Metz JG, Diner BA, Vass I, Komenda J (2002) Histidine residue 252 of the photosystem II polypeptide is involved in a light induced cross-linking of the polypeptide with the α subunit of cytochrome b-559: study of a site-directed mutant of Synechocystis PCC 6803. Biochim Biophys Acta 1554:192–201

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Zhang X, Zhu X, Li T, Zhan J, Chen H, He C, Wang Q (2017) Dynamic changes of IsiA containing complexes during long-term iron deficiency in Synechocystis sp. PCC 6803. Mol Plant 10:143–154

    Article  CAS  PubMed  Google Scholar 

  • Michel KP, Pistorius EK (2004) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of idiA and isiA. Physiol Plant 120:36–50

    Article  CAS  PubMed  Google Scholar 

  • Msilini N, Zaghdoudi M, Govindachary S, Lachaàl M, Ouerghi Z, Carpentier R (2011) Inhibition of photosynthetic oxygen evolution and electron transfer from the quinone acceptor QA 2 to QB by iron deficiency. Photosynth Res 107:247–256

    Article  CAS  PubMed  Google Scholar 

  • Öquist G (1974) Iron deficiency in the blue-green alga Anacystis nidulans: fluorescence and absorption spectra recorded at 77K. Physiol Plant 31:55–58

    Article  Google Scholar 

  • Pakrasi HB, Goldenberg A, Sherma LA (1985) Membrane development in the cyanobacterium Anacystis nidulans, under recovery from iron starvation. Plant Physiol 79:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Act 975:384–394

    Article  CAS  Google Scholar 

  • Rakhimberdieva MG, Boichenko VA, Karapetyan NV, Stadnichuk IN (2001) Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry 40:15780–15788

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sandman G (1985) Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae. Photosynth Res 6:261–271

    Article  Google Scholar 

  • Sandström S, Park YI, Öquist G, Gustafsson P (2001) CP43’, the isiA gene product, functions as an excitation energy dissipator in the cyanobacterium Synechococcus sp. PCC 7942. Photochem Photobiol 74(3):431–437

    Article  PubMed  Google Scholar 

  • Schlodder E, Shubin VV, El-Mohsnawy E, Rögner M, Karapetyan NV (2007) Steady-state and transient polarized absorption spectroscopy of photosystem I complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus. Biochim Biophys Acta 1767:732–741

    Article  CAS  PubMed  Google Scholar 

  • Schoffman H, Keren N (2019) Function of the IsiA pigment–protein complex in vivo. Photosynth Res 141:343–353

    Article  CAS  PubMed  Google Scholar 

  • Shaked Y, Kustka AB, Morel FMM (2005) A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol Oceanogr 50(3):872–882

    Article  CAS  Google Scholar 

  • Sherman DM, Sherman LA (1983) Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol 156(1):393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Sinha R, Häder D (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Toporik H, Li J, Williams D, Chiu PL, Mazor Y (2019) The structure of the stress-induced photosystem I-IsiA antenna supercomplex. Nat Struct Mol Biol 26:443–449

    Article  CAS  PubMed  Google Scholar 

  • Vass I, Chapman DJ, Barber J (1989) Thermoluminescence properties of the isolated photosystem two reaction centre. Photosynth Res 22(3):295–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks go to Prof. Matthias Rögner (Ruhr University Bochum) for allowing measuring some Spectroscopical measurements in his lab, EE; and Institute of Microbiology, Czech Academy of Science, Trebon, Czech Republic for awarding fellowship and Tanta University for travel support, ME. OP was supported by Grant Agency of the Czech Republic, project 18-07822S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafa M. El-Sheekh or Eithar El-Mohsnawy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Schleiff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sheekh, M.M., Prášil, O. & El-Mohsnawy, E. Physiological and spectroscopical changes of the thermophilic cyanobacterium Synechococcus elongatus under iron stress and recovery culture. Acta Physiol Plant 43, 72 (2021). https://doi.org/10.1007/s11738-021-03242-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03242-0

Keywords

Navigation