Skip to main content
Log in

The Thermodynamic Assessment of the Binary System Bi-Rh

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The Bi-Rh binary phase diagram was modelled by CALPHAD approach for the first time. The modelled phase diagram is based mainly on recently published experimental phase diagrams. Very good agreement with the experimental results was reached for the Bi-Rh phase diagram and for the calculated thermodynamic properties, namely the standard enthalpy of mixing of the BiRh phase at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Kainzbauer, K.W. Richter, and H. Ipser, The Binary Bi-Rh Phase Diagram: Stable and Metastable Phases, J. Phase Equilib. Diffus., 2018, 39, p 17-34

    Article  Google Scholar 

  2. N.N. Zhuravlev and G.S. Zhdanov, The Structure of Superconductors VIII. X-ray and Metallographic Investigations of the System Bismuth-Rhodium, Sov. Phys. JETP 1/1 (1955) 91-99.

  3. K. Lee, J.C. Suits, and G.B. Street, Stabilization on the High Temperature Phase of MnBi by the Addition of Rhodium or Ruthenium, Appl. Phys. Lett., 1975, 26(2), p 27-29

    Article  ADS  Google Scholar 

  4. F. Weitzer, W. Schnelle, R.C. Gil, S. Hoffmann, R. Giedigkeit, and Y. Grin, Phase Relationship and Superconductivity in the Bi-Rich Part of the Binary System Bi-Rh, Calphad, 2009, 33, p 27-30

    Article  Google Scholar 

  5. H. Rössler and Z. Chem, 734 (original paper not available, cited in M. Hansen, Der Aufbau der Zweistofflegierungen, Eine kritische Zusammenfassung, 1900, 1963, p 324-326

    Google Scholar 

  6. L. Wöhler and L. Metz, The Separation of Platinum Metals, Z. Anorg. Chem., 1925, 149, p 309-310

    Google Scholar 

  7. E. Rode, Izv. Inst. Platiny, 1925, 7, p 21

    Google Scholar 

  8. M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd ed., McGraw-Hill Book Comp, New York, 1958

    Google Scholar 

  9. G.S. Zhdanov, Structure of Some Metallic Compounds of Bismuth, Trudy Inst. Krist. Akad. Nauk S.S.S.R., 1954, 10, p 99-116, in Russian

    Google Scholar 

  10. V.P. Glagoleva and G.S. Zhdanov, Structure of Superconductors III. X-ray Investigation of the Structure and Solubility of Components in BiRh, Zh. 2, Eksp. Teor. Fiz., 1953, 25, p 248-254

    Google Scholar 

  11. R.N. Kuzmin, N.N. Zhuravlev, Determination of the Bi-Rh Phase Diagram with Greater Refinement, Kristallographie, 1961, 6, p 269-271, in Russian61Sch2 Schweitzer, D.G., Weeks, J.R.: ASM Trans. Q. 54 (1961) 185.

  12. R.N. Kuzmin, N.N. Zhuravlevm, and G.S. Zhdanov, Thermal analysis of the BiRh System, Zh. Neorg. Chim., 1963, 8, p 190-1914

    Google Scholar 

  13. R.G. Ross and W. Hume-Rothery, The Compound Bi4Rh, J. Less-Common Met., 1959, 1, p 304-308

    Article  Google Scholar 

  14. R.G. Ross and W. Hume-Rothery, On the Equilibrium diagram of the system Bismuth-Rhodium, J. Less Common Met., 1962, 4, p 454-459

    Article  Google Scholar 

  15. B. Predel, Landolt-Börnstein, Group IV, Macroscopic and technical properties of matter, Vol. 5: Phase Equlibira, crystallographic and thermodynamic data of binary alloys, subvol. H, Springer, Heidelberg (1992) 223-224.

  16. H.J. Okamoto, Bi-Rh (Bismuth-Rhodium), J. Phase Equilib. Differ., 2010, 31, p 204

    Article  Google Scholar 

  17. N.E. Alekseevskii, G.S. Zhdanov, and N.N. Zhuravlev, The Problem of the Superconductivity of the Compounds Bi4Rh and Bi2Rh, Sov. Phys. JETP, 1955, 1(1), p 99-102

    Google Scholar 

  18. M. Ruck, Kristallstruktur und Zwillingsbildung der intermetallischen Phase β-Bi2Rh (Crystal Structure and Twin Formation in the Intermetallic Phase β-Bi2Rh), Acta Crystallogr. B, 1996, 52, p 605-609

    Article  Google Scholar 

  19. G.S. Zhdanov, N.N. Zhuravlev, and R.N. Kuz’min, The Bismuth-Rhodium System, Zhurn. Neorganich. Chim., 1958, 3, p 750-754

    Google Scholar 

  20. H. Fjellvag and S. Furuseth, Structural Properties of Ni1-tRhtBi3, J. Less Common Met., 1987, 128, p 177-183

    Article  Google Scholar 

  21. R.N. Kuzmin and G.S. Zhdanov, X-ray Analysis of the Superconducting Compound β-Bi3Rh, Kristallographie, 1960, 5, p 869-876

    Google Scholar 

  22. Q.F. Gu, G. Krauss, Y. Grin, and W. Streurer, Comparative High- Pressure Study and Chemical Bonding Analysis of Rh3Bi14 and Isostructural Rh3Bi12Br2, J. Solid State Chem., 2007, 180(3), p 940-948

    Article  ADS  Google Scholar 

  23. S.V. Meschel and P. Nash, Thermochemistry of Some Zinc-Transition Metal (TM) Compounds and Some Bismuth-TM Compounds by High Temperature Direct Synthesis Calorimetry, CALPHAD, 2019, 64, p 131-138

    Article  Google Scholar 

  24. F.R. deBoer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals. Transition Metal Alloys, Elsevier, Amsterdam, 1989.

  25. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, Materials design and discovery with High-Throughput Density Functional Theory: the Open Quantum Materials Database (OQMD), JOM, 2013, 65, p 1501-1509

    Article  Google Scholar 

  26. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, New York, 204

  27. N. Saunders and A.P. Miodownik, Calphad (A Comprehensive Guide), Pergamon Press, Oxford, 1998

    Google Scholar 

  28. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and S. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26, p 273-312

    Article  Google Scholar 

  29. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, PANDAT Software with PanEngine, PanOptimizer and PanPrecipitation for Multicomponent Phase Diagram Calculation and Materials Property Simulation, CALPHAD, 2009, 33, p 328-342

    Article  Google Scholar 

  30. O. Redlich and A. Kister, Thermodynamics of Nonelectrolyte Solutions- X-Y-T Relations in a Binary System. Ind. Eng, Chem., 1948, 40, p 341-345

    Google Scholar 

  31. SGTE Unary Database, Version 4.4, www.sgte.org. Accessed 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Zobač.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobač, O., Kroupa, A. The Thermodynamic Assessment of the Binary System Bi-Rh. J. Phase Equilib. Diffus. 41, 900–906 (2020). https://doi.org/10.1007/s11669-020-00854-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00854-w

Keywords

Navigation