Skip to main content
Log in

Tungsten Heavy Alloys from Mixed Feedstock by RF Plasma

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Tungsten heavy alloys (WHA) are particulate composites of spherical W particles embedded in a ductile Ni-rich matrix. In our study, pre-treated W and Ni feedstock powders were used to prepare three different compositions (all wt.%) for spraying: W-10Ni, W-20Ni for two different WHA, and W-65Ni for a matrix-only material without the reinforcing W particles. Using radio frequency inductively coupled plasma spraying (RF-ICP) method, low porosity deposits were obtained with ductility exceeding 5%. By a detailed study of the microstructure and the particle-matrix interfaces, the mechanism of the composite formation was identified: a rapid dissolution of W in the liquid Ni and a subsequent W particle solidification followed by the solidification of the matrix. The mechanical properties of the composites are defined by the Ni-rich matrix (tough and significantly stronger than pure Ni) with well bonded stiff W particles. The elastic behavior was related to the W content following the Reuss model, describing a layered composite modulus in a serial configuration. Contrary to this, in the plastic regime, all WHA exhibited nearly identical behavior regardless of the W content. In this regime, the deformation of the W particles reached several percent, indicating an extremely strong particle-matrix bonding. Last, the failure mechanisms of the materials were investigated, with the matrix behavior governing the fatigue failure, and particle-matrix decohesion dominating in the static loading at higher loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Rittel and G. Weisbrod, Dynamic Fracture of Tungsten Base Heavy Alloys, Int. J. Fracture, 2001, 112(1), p 87-98. https://doi.org/10.1023/a:1013581609836

    Article  CAS  Google Scholar 

  2. R. Kocich, L. Kunčická, D. Dohnalík, A. Macháčková, and M. Šofer, Cold rotary Swaging of a Tungsten Heavy Alloy: Numerical and Experimental Investigations, Int. J. Refractory Metals and Hard Mater., 2016, 61, p 264-272. https://doi.org/10.1016/j.ijrmhm.2016.10.005

    Article  CAS  Google Scholar 

  3. R. Neu, H. Maier, M. Balden, S. Elgeti, H. Gietl, H. Greuner, A. Herrmann, A. Houben, V. Rohde, B. Sieglin, and I. Zammuto, Investigations on Tungsten Heavy Alloys for use as Plasma Facing Material, Fusion Eng. Des., 2017, 124, p 450-454. https://doi.org/10.1016/j.fusengdes.2017.01.043

    Article  CAS  Google Scholar 

  4. A. Iveković, M.L. Montero-Sistiaga, K. Vanmeensel, J.-P. Kruth, and J. Vleugels, Effect of Processing Parameters on Microstructure and Properties of Tungsten Heavy Alloys Fabricated by SLM, Int. J. Refractory Metals and Hard Mater., 2019, 82, p 23-30. https://doi.org/10.1016/j.ijrmhm.2019.03.020

  5. Y. Wang, X. Xiong, L. Xie, X. Xu, X. Min, and F. Zheng, Sintering Behavior of Tungsten Heavy Alloy Products Made by Plasma Spray Forming, Mater. Trans., 2011, 52(4), p 759-767. https://doi.org/10.2320/matertrans.m2010391

    Article  CAS  Google Scholar 

  6. O. KovářÍk, J. Čech, J. Cizek, J. Klečka, M. Hajíček, in Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, ed. by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. Lau, R. Fernandez, O. Ozdemir, H.S. Jazi, F. Toma (ASM International, 2021). https://doi.org/10.31399/asm.cp.itsc2021p0115

  7. O. Kovarik, J. Siegl, J. Cizek, T. Chraska, and J. Kondas, Fracture Toughness of Cold Sprayed Pure Metals, J. Therm. Spray Technol., 2020, 29, p 147-157. https://doi.org/10.1007/s11666-019-00956-z

    Article  CAS  Google Scholar 

  8. J. Blaber, B. Adair, and A. Antoniou, Ncorr: Open-Source 2d Digital Image Correlation Matlab Software, Exp. Mech., 2015, 55, p 1105-1122. https://doi.org/10.1007/s11340-015-0009-1

    Article  Google Scholar 

  9. H. Herbert, Ueber den zusammenhang der biegungselastizit¨at des gußeisens mit seiner zug- und druckelastizit¨at, Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, 1910, pp. 39-81. https://doi.org/10.1007/978-3-662-02218-4 2

  10. R.A. Mayville and I. Finnie, Uniaxial Stress-Strain Curves from a Bending Test, Exp. Mech., 1982, 22, p 197-201. https://doi.org/10.1007/BF02326357

    Article  Google Scholar 

  11. ASTM, E1820: Standard Test Method for Measurement of Fracture Tough- Ness, ASTM Book of Standards, 2013, pp. 1-54. https://doi.org/10.1520/E1820-13 . URL https://www.astm.org/Standards/E1820

  12. O. Kovarik, J. Cizek, J. Klecka, M. Karlik, J. Capek, J. Siegl, T. Chraska, and S. Takayasu, Mechanical Properties and Fatigue Crack Growth in Tungsten Deposited by RF-Plasma, Surface and Coatings Technol., 2021, 410, p 126930. https://doi.org/10.1016/j.surfcoat.2021.126930

    Article  CAS  Google Scholar 

  13. V.P. Golub, V.P. Butseroga, and A.D. Pogrebnyak, Study of the Kinetics of Fatigue Cracks by the Method of Differential Compliance, Int. Appl. Mech., 1995, 31, p 1018-1025. https://doi.org/10.1007/BF00847262

    Article  Google Scholar 

  14. O. Kovarik, A. Janca, and J. Siegl, Fatigue Crack Growth Rate in Miniature Specimens Using Resonance, Int. J. Fatigue, 2017, 102, p 252-260. https://doi.org/10.1016/j.ijfatigue.2017.02.015

    Article  CAS  Google Scholar 

  15. D.L. Sahagian and A.A. Proussevitch, 3d Particle Size Distributions from 2d Observations: Stereology for Natural Applications, J. Volcanol Geothermal Res, 1998, 84(3-4), p 173-196.

    Article  CAS  Google Scholar 

  16. ISO, ISO14577: Metallic materials - Instrumented Indentation Test for Hardness and Material Parameters, ISO, 2015. https://doi.org/10.3403/BSENISO14577

  17. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining hard- Ness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564-1583. https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  18. J. Veverka, M. Vilémová, Z. Chlup, H. Hadraba, F. Lukáč, S. Csáki, J. Matějíček, J. Vontorová, and T. Chráska, Evolution of Carbon and Oxy- Gen Concentration in Tungsten Prepared by Field Assisted Sintering and its Effect on Ductility, Int. J. Refract. Hard. Met., 2021, 97, p 105499. https://doi.org/10.1016/j.ijrmhm.2021.105499

    Article  CAS  Google Scholar 

  19. F. Predel, in Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys (Springer Berlin Heidelberg, 2016), pp. 128-129. https://doi.org/10.1007/978-3-642-24977-8 73

  20. E. Lassner and W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds Erik Lassner and Wolf- Dieter Schubert (1999)

  21. T. Antonsson and L. Ekbom, Initial Stage of Liquid Phase Sintering: Liquid Reaction and Particle Growth in w–ni–fe–(co), Powder Metall., 2001, 44(4), p 325-332. https://doi.org/10.1179/pom.2001.44.4.325

    Article  CAS  Google Scholar 

  22. R. German, Sintered Tungsten Heavy Alloys: Review of Microstructure, Strength, Densification, and Distortion, Int. J. Refractory Metals and Hard Mater., 2022 https://doi.org/10.1016/j.ijrmhm.2022.105940

    Article  Google Scholar 

  23. R. Hill, Elastic Properties of Reinforced Solids: Some Theoretical Principles, J. Mech. Phys. Solids, 1963, 11(5), p 357-372. https://doi.org/10.1016/0022-5096(63)90036-x

    Article  Google Scholar 

  24. A. Hartman and J. Schijve, The Effects of Environment and Load Frequency on the Crack Propagation Law for Macro Fatigue Crack Growth in Aluminium Alloys, Eng. Fracture Mech., 1970, 1(4), p 615-631.

    Article  CAS  Google Scholar 

  25. K.H. Schwalbe, Some Aspects of Crack Propagation Under Monotonic and Cyclic Load, Eng. Fract. Mech., 1977, 9(3), p 547-556. https://doi.org/10.1016/0013-7944(77)90070-4

    Article  CAS  Google Scholar 

  26. R. Jones, O. Kovarik, S. Bagherifard, J. Cizek, and J. Lang, Damage Tolerance Assessment of AM 304l and Cold Spray Fabricated 316l Steels and its Implications for Attritable Aircraft, Eng. Fracture Mech., 2021, 254, p 107916. https://doi.org/10.1016/j.engfracmech.2021.107916

    Article  Google Scholar 

  27. J. Cizek, O. Kovarik, J. Cupera, J. Kondas, T. Bajer, F. Siska, M. Janovska, and H. Seiner, Measurement of Mechanical and Fatigue Properties using Unified, Simple-Geometry Specimens: Cold Spray Additively Manufactured Pure Metals, Surface and Coat Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.126929

    Article  Google Scholar 

  28. J. Riedle, P. Gumbsch, and H.F. Fischmeister, Cleavage Anisotropy in Tungsten Single Crystals, Phys. Rev. Lett., 1996, 76(19), p 3594-3597. https://doi.org/10.1103/physrevlett.76.3594

    Article  CAS  Google Scholar 

  29. P. Gumbsch, Brittle Fracture and the Brittle-to-Ductile Transition of Tungsten, J. Nucl. Mater., 2003, 323(2–3), p 304-312. https://doi.org/10.1016/j.jnucmat.2003.08.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Czech Science Foundation project Nr. 19-14339S and financial support by the European Regional Development Fund in the frame of the project Centre of Advanced Applied Sciences (No. CZ.02.1.01/0.0/0.0/16 019/0000778) are gratefully acknowledged. R. Zlatnik and T. Bajer are acknowledged for the RF-ICP and cyclic bend test device schematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Kovarik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovarik, O., Cizek, J., Klecka, J. et al. Tungsten Heavy Alloys from Mixed Feedstock by RF Plasma. J Therm Spray Tech 32, 2747–2762 (2023). https://doi.org/10.1007/s11666-023-01647-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01647-6

Keywords

Navigation