Skip to main content
Log in

Pulsed Plasma Surfacing of Titanium Matrix Cermet Based on B4C

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Pulsed plasma transferred arc surfacing is presently used in many industrial applications to make protective layers against corrosion, temperature exposition, and excessive wear. Increasing wear resistance is especially important in areas of industry where titanium alloys are used, such as aviation and cosmonautics, because the wear resistance of titanium alloys is often weak. One way to increase the wear resistance is to deposit or form a cermet with a titanium matrix (TMC) on the surface of the part. The present study deals with the fabrication and characterization of TMC based on B4C. TMC with B4C was formed by co-feeding Ti6Al4V and B4C powder into a melting pool. Two B4C powders with different grain size were mixed with Ti6Al4V matrix in two ratios. It has been found that the deposited, thick layers have dispersed B4C grains in the matrix. The B4C grains partially dissolve in the titanium matrix to form borides and carbides. The resulting structure of the deposits is formed by a matrix with dispersed TiCx and TiBw particles; in some clusters, a full transformation of Ti was observed, resulting in regions containing only borides and carbides. The deposits are metallurgically connected to the substrate—Ti6Al4V. The TMCs were investigated in terms of microstructure and chemical composition and phase composition. Indentation hardness and reduced elastic modulus of individual phases were assessed by nanoindentation modulus mapping. Friction coefficient was determined using the linear pin test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Holmberg and A. Erdemir, Influence of Tribology on Global Energy Consumption, Costs and Emissions, Friction, 2017, 5(3), p 263-284.

    Article  CAS  Google Scholar 

  2. M. Kandeva, A. Vencl and D. Karastoyanov. Advanced Tribological Coatings For Heavy-Duty Applications: Case Studies. Marin Drinov Publishing House of Bulgarian Academy of Sciences, Sofia, 2016.

    Google Scholar 

  3. B.G. Mellor. Surface Coatings for Protection Against Wear. Woodhead Publishing, Cambridge, 2006, p 429.

    Book  Google Scholar 

  4. K.C. Antony, J. Glenny, and J.E. Northwood. Hardfacing, Welding, Brazing and Soldering. Metals Handbook, American Society for Metals, 1983.

  5. A.S.C.M. D’oliveira, R.S.C. Paredes, and R.L.C. Santos, Pulsed Current Plasma Transferred Arc Hardfacing, J. Mater. Process. Technol., 2006, 171(2), p 167-174. https://doi.org/10.1016/j.jmatprotec.2005.02.269

    Article  CAS  Google Scholar 

  6. P. Rohan, T. Kramár, and J. Petr, HSS Deposition by PTA – Feasibility and Properties, Adv. Sci. Technol. Res. J., 2016, 10(29), p 57-61.

    Article  Google Scholar 

  7. P. Rohan and M. Boxanová. Lecheng ZHANG a František LUKÁČ. High speed steel deposited by pulsed PTA – frequency influence. In: Proceedings of the Conference in Düsseldorf - ITSC 2017. 336. DVS Media GmbH, Dusseldorf, Germany, 2017, p. 4. ISBN 978-3-96144-000-9

  8. D. Olson, ASM Handbook: Welding, Brazing, and Soldering: Welding, Brazing, and Soldering, Asm Intl, Ohio, 1993.

    Book  Google Scholar 

  9. American Society for Metals. Properties and Selection: Nonferrous Alloys and Pure Metals, Vol. 2. Metals Park, Ohio, 1978.

  10. G. Welsch, R. Boyer, and E.W. Collings, Materials Properties Handbook: Titanium Alloys: Titanium Alloys, ASM international, Ohio, 1993.

    Google Scholar 

  11. P. Kumar and K.S. Chandran, Strength–Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships: A Critical Review of Processing-Structure-Property Relationships, Metall. Mater. Trans. A, 2017, 48(5), p 2301-2319.

    Article  CAS  Google Scholar 

  12. O. Ivasishin, D. Savvakin, F. Froes, and K. Bondareva, Synthesis of Alloy Ti-6Al-4V with Low Residual Porosity by a Powder Metallurgy Method, Powder Metall. Met. Ceram., 2002, 41(7–8), p 382-390.

    Article  CAS  Google Scholar 

  13. L. Bolzoni, E. Ruiz-navas, and E. Gordo, Feasibility Study of the Production of Biomedical Ti–6Al–4V Alloy by Powder Metallurgy, Mater. Sci. Eng. C, 2015, 49, p 400-407.

    Article  CAS  Google Scholar 

  14. L. Song, H. Xiao, J. Ye, and S. Li, Direct Laser Cladding of Layer-Band-Free Ultrafine Ti6Al4V Alloy, Surf. Coat. Technol., 2016, 307, p 761-771. https://doi.org/10.1016/j.surfcoat.2016.10.007

    Article  CAS  Google Scholar 

  15. A. Antonysamy, Microstructure, Texture and Mechanical Property Evolution During Additive Manufacturing of Ti6Al4V Alloy for Aerospace Applications, The University of Manchester, United Kingdom, 2012.

    Google Scholar 

  16. B. Dutta and F. Froes, 24 - The Additive Manufacturing (AM) of Titanium Alloys, Butterworth-Heinemann, Boston, 2015, p 447-468

    Google Scholar 

  17. S. Jhavar, N.K. Jain, and C.P. Paul, Development of Micro-Plasma Transferred arc (μ-PTA) Wire Deposition Process for Additive Layer Manufacturing Applications, J. Mater. Process. Technol., 2014, 214(5), p 1102-1110. https://doi.org/10.1016/j.jmatprotec.2013.12.016

    Article  CAS  Google Scholar 

  18. J.J. Lin, Y.H. Lv, Y.X. Liu, B.S. Xu, Z. Sun, Z.G. Li, and Y.X. Wu, Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Wall Deposited by Pulsed Plasma Arc Additive Manufacturing, Mater. Des., 2016, 102, p 30-40. https://doi.org/10.1016/j.matdes.2016.04.018

    Article  CAS  Google Scholar 

  19. F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, and F. Wang, Investigation of the Benefits of Plasma Deposition for the Additive Layer Manufacture of Ti–6Al–4V, J. Mater. Process. Technol., 2012, 212(6), p 1377-1386. https://doi.org/10.1016/j.jmatprotec.2012.02.002

    Article  CAS  Google Scholar 

  20. A. Molinari, G. Straffelini, B. Tesi, and T. Bacci, Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy, Wear, 1997, 208(1), p 105-112. https://doi.org/10.1016/S0043-1648(96)07454-6

    Article  CAS  Google Scholar 

  21. C. Martini and L. Ceschini, A Comparative Study of the Tribological Behaviour of PVD Coatings on the Ti-6Al-4V Alloy, Tribol. Int., 2011, 44(3), p 297-308.

    Article  CAS  Google Scholar 

  22. G. Cassar, S. Banfield, J.C. Wilson, J. Housden, A. Matthews, and A. Leyland, Impact Wear Resistance of Plasma Diffusion Treated and Duplex Treated/PVD-Coated Ti–6Al–4V Alloy, Surf. Coat. Technol., 2012, 206(10), p 2645-2654.

    Article  CAS  Google Scholar 

  23. O. Çelik, Microstructure and Wear Properties of WC Particle Reinforced Composite Coating on Ti6Al4V Alloy Produced by the Plasma Transferred Arc Method, Appl. Surf. Sci., 2013, 274, p 334-340.

    Article  Google Scholar 

  24. M. Asadikiya, C. Zhang, C. Rudolf, B. Boesl, A. Agarwal, and Y. Zhong, The Effect of Sintering Parameters on Spark Plasma Sintering of B4C, Ceram. Int., 2017, 43(14), p 11182-11188.

    Article  CAS  Google Scholar 

  25. K. Kim, J. Chae, J. Park, J. Ahn, and K. Shim, Sintering Behavior and Mechanical Properties of B4C Ceramics Fabricated by Spark Plasma Sintering, J. Ceram. Process. Res., 2009, 10(6), p 716-720.

    Google Scholar 

  26. J. Selvam, I. Dinaharan, and R. Rai. Matrix and Reinforcement Materials for Metal Matrix Composites. 2021. https://doi.org/10.1016/B978-0-12-803581-8.11890-9

  27. R.E. Tressler, Structural and Thermostructural Ceramics, Elsevier, Oxford, 2001, p 8913-8921

    Google Scholar 

  28. I.G. Crouch, G.V. Franks, C. Tallon, S. Thomas, and M. Naebe, 7 - glasses and ceramics, Woodhead Publishing in Materials. Woodhead Publishing, Sawston, 2017, p 331-393

    Google Scholar 

  29. M. Rosso, Ceramic and Metal Matrix Composites: Routes and Properties: Routes and Properties, J. Mater. Process. Technol., 2006, 175(1), p 364-375.

    Article  CAS  Google Scholar 

  30. S. Bahl, Fiber Reinforced Metal Matrix Composites - A Review, Mater. Today Proc., 2021, 39, p 317-323. https://doi.org/10.1016/j.matpr.2020.07.423

    Article  CAS  Google Scholar 

  31. V. Mamedov, Spark Plasma Sintering as Advanced PM Sintering Method, Powder Metall., 2002, 45(4), p 322-328. https://doi.org/10.1179/003258902225007041

    Article  CAS  Google Scholar 

  32. D.R. Ni, L. Geng, J. Zhang, and Z.Z. Zheng, Effect of B4C Particle Size on Microstructure of In Situ Titanium Matrix Composites Prepared by Reactive Processing of Ti–B4C System, Scr. Mater., 2006, 55(5), p 429-432.

    Article  CAS  Google Scholar 

  33. P.A. Molian and L. Hualun, Laser Cladding of ti-6al-4v with bn for Improved Wear Performance, Wear, 1989, 130(2), p 337-352. https://doi.org/10.1016/0043-1648(89)90187-7

    Article  CAS  Google Scholar 

  34. M. Hayat, H. Singh, Z. He, and P. Cao, Titanium Metal Matrix Composites: An Overview: An Overview, Compos. A Appl. Sci. Manuf., 2019, 121, p 418-438. https://doi.org/10.1016/j.compositesa.2019.04.005

    Article  CAS  Google Scholar 

  35. P. Mendez, N. Barnes, K. Bell et al., Welding Processes for Wear Resistant Overlays, J. Manuf. Process., 2014, 16(1), p 4-25. https://doi.org/10.1016/j.jmapro.2013.06.011

    Article  Google Scholar 

  36. T.R. Chapman, D.E. Niesz, R.T. Fox, and T. Fawcett, Wear-Resistant Aluminum–Boron–Carbide Cermets for Automotive Brake Applications, Wear, 1999, 236(1), p 81-87. https://doi.org/10.1016/S0043-1648(99)00259-8

    Article  CAS  Google Scholar 

  37. Z.F. Zhang, L.C. Zhang, and Y.W. Mai, Wear of Ceramic Particle-Reinforced Metal-Matrix Composites - Part I Wear Mechanisms, J. Mater. Sci., 1995, 30(8), p 1961-1966. https://doi.org/10.1007/BF00353018

    Article  CAS  Google Scholar 

  38. E. Pérez-Soriano, C. Arévalo Mora, and I. Montealegre-Meléndez, In situ titanium composites: XRD study of secondary phases tied to the processing conditions and starting materials: XRD study of secondary phases tied to the processing conditions and starting materials, High-Resolution Inelastic X-Ray Scattering. IntechOpen, London, 2019

    Google Scholar 

  39. H. Zhao and Y.-B. Cheng, Formation of TiB2–TiC Composites by Reactive Sintering, Ceram. Int., 1999, 25(4), p 353-358. https://doi.org/10.1016/S0272-8842(98)00048-0

    Article  CAS  Google Scholar 

  40. B.-J. Choi and Y.-J. Kim, In-Situ (TiB+ TiC) Particulate Reinforced Titanium Matrix Composites: Effect of B 4 C Size and Content: Effect of B 4 C Size and Content, Met. Mater. Int., 2013, 19(6), p 1301-1307.

    Article  CAS  Google Scholar 

  41. K. Zhang, X. Tian, M. Bermingham et al., Effects of Boron Addition on Microstructures and Mechanical Properties of Ti-6Al-4V Manufactured by Direct Laser Deposition, Mater. Des., 2019, 2019(184), p 108191. https://doi.org/10.1016/j.matdes.2019.108191

    Article  CAS  Google Scholar 

  42. P. Jiang, X.L. He, X.X. Li, L.G. Yu, and H.M. Wang, Wear Resistance of a Laser Surface Alloyed Ti–6Al–4V Alloy, Surf. Coat. Technol., 2000, 130(1), p 24-28. https://doi.org/10.1016/S0257-8972(00)00680-0

    Article  CAS  Google Scholar 

  43. M. Erinosho and E. Akinlabi, Influence of Laser Power on Improving the Wear Properties of Laser-Deposited Ti-6Al-4V+ B 4 C Composite, Stroj. Vest. J. Mech. Eng., 2018, 64(7–8), p 488-495.

    Google Scholar 

  44. M. Nartu, S. Mantri, M. Pantawane, Y.-H. Ho, B. Mcwilliams, K. Cho, N. Dahotre, and R. Banerjee, In Situ Reactions During Direct Laser Deposition of Ti-B4C Composites, Scr. Mater., 2020, 183, p 28-32.

    Article  CAS  Google Scholar 

  45. S. Chen, A. Usta, and M. Eriten, Microstructure and Wear Resistance of Ti6Al4V Surfaces Processed by Pulsed Laser, Surf. Coat. Technol., 2017, 315, p 220-231. https://doi.org/10.1016/j.surfcoat.2017.02.031

    Article  CAS  Google Scholar 

  46. L. Vály, D. Grech, E. Neubauer, M. Kitzmantel, L. Bača, and N. Stelzer, Preparation of titanium metal matrix composites using additive manufacturing, Key Engineering Materials. Trans Tech Publ, Switzerland, 2017

    Google Scholar 

  47. S. Risbud, J. Groza, and M. Kim, Clean Grain Boundaries in Aluminium Nitride Ceramics Densified without Additives by a Plasma-Activated Sintering Process, Philos. Mag. B, 1994, 69(3), p 525-533. https://doi.org/10.1080/01418639408240126

    Article  CAS  Google Scholar 

  48. I. Montealegre-Melendez, C. Arévalo, E. Ariza, E. Pérez-Soriano, C. Rubio-Escudero, M. Kitzmantel, and E. Neubauer, Analysis of the Microstructure and Mechanical Properties of Titanium-Based Composites Reinforced by Secondary Phases and B4C Particles Produced via Direct Hot Pressing, Materials, 2017 https://doi.org/10.3390/ma10111240

    Article  Google Scholar 

  49. C.A.C. Sequeira and L. Amaral, Role of Kirkendall Effect in Diffusion Processes in Solids, Trans. Nonferr. Met. Soc. China, 2014, 24(1), p 1-11. https://doi.org/10.1016/S1003-6326(14)63021-1

    Article  CAS  Google Scholar 

  50. H.X. Li, Z.H. Zhong, A.K. Yang, Z.Q. Wang, Q. Wen, C. Chen, K.J. Song, and Y.C. Wu, Interfacial Microstructure Evolution and Mechanical Properties of B4C-Based Composite Joints Bonded with Ti Foil, Ceram. Int., 2018, 44(15), p 18016-18024. https://doi.org/10.1016/j.ceramint.2018.07.003

    Article  CAS  Google Scholar 

  51. H. Izui, S. Komaki, and M. Okano, Mechanical Properties of TiB/Ti Composites by Spark Plasma Sintering, J. Solid Mech. Mater. Eng., 2008, 2(2), p 234-242. https://doi.org/10.1299/jmmp.2.234

    Article  Google Scholar 

  52. S. Sun, M. Wang, L. Wang, J. Qin, W. Lu, and D. Zhang, The Influences of Trace TiB and TiC on Microstructure Refinement and Mechanical Properties of In Situ Synthesized Ti Matrix Composite, Compos. B Eng., 2012, 43(8), p 3334-3337. https://doi.org/10.1016/j.compositesb.2012.01.075

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors acknowledge support from the ESIF EU Operational Programme Research, Development and Education and from the Center of Advanced Aerospace Technology (CZ.02.1.01/0.0/0.0/16_019/0000826), Faculty of Mechanical Engineering, Czech Technical University in Prague

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Rohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohan, P., Lukáč, F., Kolaříková, M. et al. Pulsed Plasma Surfacing of Titanium Matrix Cermet Based on B4C. J Therm Spray Tech 31, 1975–1984 (2022). https://doi.org/10.1007/s11666-022-01421-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01421-0

Keywords

Navigation