Skip to main content
Log in

Microstructures and Thermal Cycling Properties of Thermal Barrier Coatings Deposited by Hybrid Water-Stabilized Plasma Torch

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Hybrid water-stabilized plasma (WSP-H) torches provide high-enthalpy plasma which may be utilized for high-throughput and yet economical spraying of coatings from powders, suspensions, and solutions. It was previously demonstrated that microstructures and functional properties of the WSP-H coatings may be tailored to a wide extent for new applications, namely those requiring high coating thickness and/or coating of large components. In this study, applicability potential of WSP-H technology for spraying of novel thermal barrier coatings (TBCs) is demonstrated. WSP-H technology was used for spraying of yttria-stabilized zirconia (YSZ) top-coats from powder, suspension, and solution. Yttria content in the top-coat feedstock was 7-8 wt.%. In addition, gadolinium zirconate (Gd2Zr2O7-GZO) was sprayed from suspension for comparison. NiCrAlY bond-coat was also deposited by WSP-H, and Hastelloy-X alloy was used as substrate material. Microstructure, phase composition, and endurance of the deposited coatings in thermal cycling fatigue (TCF) test and during high-temperature short-term annealing were evaluated. All coatings showed excellent high-temperature stability and TCF resistance withstanding more than 650 cycles, surpassing some of the currently commercially used TBCs. Lifetime of the TBC with columnar top-coat deposited from YSZ suspension exceeded even more than 900 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  CAS  Google Scholar 

  2. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Cleveland, 2004, 338 p, ISBN 0-87170-795-0

  3. R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315-348

    Article  CAS  Google Scholar 

  4. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review, J. Therm. Spray Technol., 2008, 17(2), p 199-213

    Article  CAS  Google Scholar 

  5. W.A. Nelson and R.M. Orenstein, TBC Experience in Land-Based Gas Turbines, J. Therm. Spray Technol., 1997, 6(2), p 176-180

    Article  CAS  Google Scholar 

  6. A. Jadhav, N.P. Padture, F. Wu, E.H. Jordan, and M. Gell, Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution-Precursor Plasma Spray, Mater. Sci. Eng., A, 2005, 405(1), p 313-320

    Article  CAS  Google Scholar 

  7. M.S. Beardsley, Thick Thermal Barrier Coatings for Diesel Engines, J. Therm. Spray Technol., 1997, 6(2), p 181-186

    Article  CAS  Google Scholar 

  8. W. Uczak de Goes, J. Somhorst, N. Markocsan, M. Gupta, and K. Illkova, Suspension Plasma-Sprayed Thermal Barrier Coatings for Light-Duty Diesel Engines, J. Therm. Spray Technol., 2019, 28(7), p 1674-1687

    Article  CAS  Google Scholar 

  9. G. Venkadesan and J. Muthusamy, Experimental Investigation of Al2O3/8YSZ and CeO2/8YSZ Plasma Sprayed Thermal Barrier Coating on Diesel Engine, Ceram. Int., 2019, 45(3), p 3166-3176

    Article  CAS  Google Scholar 

  10. A. Tricoire, B. Kjellman, J. Wigren, M. Vanvolsem, and L. Aixala, Insulated Piston Heads for Diesel Engines, J. Therm. Spray Technol., 2009, 18(2), p 217-222

    Article  CAS  Google Scholar 

  11. Y. Kawahara, An Overview on Corrosion-Resistant Coating Technologies in Biomass/Waste-to-Energy Plants in Recent Decades, Coatings, 2016, 6 (3), https://doi.org/10.3390/coatings6030034

  12. D. Fantozzi, J. Kiilakoski, H. Koivuluoto, P. Vuoristo, M. Uusitalo, G. Bolelli, V. Testa, and L. Lusvarghi, High Temperature Corrosion Properties of Thermally Sprayed Ceramic Oxide Coatings, in Proceedings of the International Thermal Spray Conference 2018, F. Azarmi, Ed., May 7-10, 2018, (Orlando, USA), ASM International, 2018, p 501–507

  13. O. Yamakawa, H. Nihonmatsu, M. Morisasa, and H. Hotta, Plasma Sprayed Ceramic Tray Members for Firing Ceramic Capacitor, in Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, on CDROM, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, G. Montavon, Ed., May 4-7, 2009 (Las Vegas, Nevada), DVS-German Welding SocietyASM International, 2009, p 624–627

  14. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440

    Article  CAS  Google Scholar 

  15. S. Ahmaniemi, P. Vuoristo, and T. Mäntylä, Mechanical and Elastic Properties of Modified Thick Thermal Barrier Coatings, Mater. Sci. Eng., A, 2004, 366(1), p 175-182

    Article  CAS  Google Scholar 

  16. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10

    Article  CAS  Google Scholar 

  17. N. Curry, N. Markocsan, X.-H. Li, A. Tricoire, and M. Dorfman, Next Generation Thermal Barrier Coatings for the Gas Turbine Industry, J. Therm. Spray Technol., 2011, 20(1–2), p 108-115

    Article  CAS  Google Scholar 

  18. M. Gupta, N. Curry, P. Nylén, N. Markocsan, and R. Vaßen, Design of next Generation Thermal Barrier Coatings - Experiments and Modelling, Surf. Coatings Technol., 2013, 220, p 20-26

    Article  CAS  Google Scholar 

  19. E. Bakan and R. Vaßen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26(6), p 992-1010

    Article  CAS  Google Scholar 

  20. S. Mahade, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Engineered Thermal Barrier Coatings Deposited by Suspension Plasma Spray, Mater. Lett., 2017, 209, p 517-521

    Article  CAS  Google Scholar 

  21. D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37(10), p 891-898

    Article  CAS  Google Scholar 

  22. C.U. Hardwicke and Y.-C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Therm. Spray Technol., 2013, 22(5), p 564-576

    Article  Google Scholar 

  23. R. Vassen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stover, Overview on Advanced Thermal Barrier Coatings, Surf. Coatings Technol., 2010, 205, p 938-942

    Article  CAS  Google Scholar 

  24. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1–2), p 226-239

    Article  Google Scholar 

  25. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coatings Technol., 2009, 203(19), p 2807-2829

    Article  CAS  Google Scholar 

  26. N. Markocsan, M. Gupta, S. Joshi, P. Nylén, X.-H. Li, and J. Wigren, Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings, J. Therm. Spray Technol., 2017, 26(6), p 1104-1114

    Article  CAS  Google Scholar 

  27. N. Curry, K. VanEvery, T. Snyder, J. Susnjar, and S. Bjorklund, Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters, Coatings, 2015, 5(3), p 338-356

    Article  CAS  Google Scholar 

  28. R. Vassen, H. Kaner, G. Mauer, and D. Stöver, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19(1–2), p 219-225

    Article  CAS  Google Scholar 

  29. R.C. Seshadri, G. Dwivedi, V. Viswanathan, and S. Sampath, Characterizing Suspension Plasma Spray Coating Formation Dynamics Through Curvature Measurements, J. Therm. Spray Technol., 2016, 25(8), p 1666-1683

    Article  CAS  Google Scholar 

  30. B. Bernard, A. Quet, L. Bianchi, V. Schick, A. Joulia, A. Malié, and B. Rémy, Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties, J. Therm. Spray Technol., 2017, 26(6), p 1025-1037

    Article  CAS  Google Scholar 

  31. P. Sokolowski, S. Bjorklund, R. Musalek, R.T. Candidato, L. Pawlowski, B. Nait-Ali, and D. Smith, Thermophysical Properties of YSZ and YCeSZ Suspension Plasma Sprayed Coatings Having Different Microstructures, Surf. Coatings Technol., 2017, 318, p 28-38

    Article  CAS  Google Scholar 

  32. L. Latka, A. Cattini, L. Pawlowski, S. Valette, B. Pateyron, J.-P. Lecompte, R. Kumar, and A. Denoirjean, Thermal Diffusivity and Conductivity of Yttria Stabilized Zirconia Coatings Obtained by Suspension Plasma Spraying, Surf. Coatings Technol., 2012, 208, p 87-91

    Article  CAS  Google Scholar 

  33. A. Ganvir, N. Curry, N. Markocsan, P. Nylén, S. Joshi, M. Vilemova, and Z. Pala, Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings, J. Therm. Spray Technol., 2016, 25(1–2), p 202-212

    Article  CAS  Google Scholar 

  34. A. Ganvir, V. Vaidhyanathan, N. Markocsan, M. Gupta, Z. Pala, and F. Lukac, Failure Analysis of Thermally Cycled Columnar Thermal Barrier Coatings Produced by High-Velocity-Air Fuel and Axial-Suspension-Plasma Spraying: A Design Perspective, Ceram. Int., 2018, 44(3), p 3161-3172

    Article  CAS  Google Scholar 

  35. M. Hrabovsky, Thermal Plasma Generators with Water Stabilized Arc, Open Plasma Physisc J., 2009, 2(1), p 99-104

    Article  CAS  Google Scholar 

  36. J. Medricky, R. Musalek, M. Janata, T. Chraska, and F. Lukac, Cost-Effective Plasma Spraying for Large-Scale Applications, in Proceedings of the International Thermal Spray Conference 2018, F. Azarmi, Ed., May 7-10, 2018, (Orlando, USA), ASM International, 2018, p 683–689

  37. R. Musalek, J. Medricky, T. Tesar, J. Kotlan, Z. Pala, F. Lukac, K. Illkova, M. Hlina, T. Chraska, P. Sokolowski, and N. Curry, Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates, J. Therm. Spray Technol., 2017, 26(8), p 1787-1803

    Article  CAS  Google Scholar 

  38. J. Colmenares-Angulo, R. Molz, D. Hawley, and R.C. Seshadri, Thorium-Free Versus Thoriated Plasma Gun Electrodes: Statistical Evaluation of Coating Properties, J. Therm. Spray Technol., 2016, 25(4), p 622-630

    Article  CAS  Google Scholar 

  39. R.S. Lima, B.M.H. Guerreiro, N. Curry, M. Leitner, and K. Korner, Environmental, Economical and Performance Impacts of Ar/H2 & N2/H2 Plasma Sprayed YSZ TBCs, in Proceedings of the International Thermal Spray Conference 2019, F. Azarmi, Ed., May 26-29, 2019, (Yokohama, Japan), ASM International, 2019, p 71–78

  40. B.R. Marple, R.S. Lima, C. Moreau, S.E. Kruger, L. Xie, and M.R. Dorfman, Yttria-Stabilized Zirconia Thermal Barriers Sprayed Using N2-H2 and Ar-H2 Plasmas: Influence of Processing and Heat Treatment on Coating Properties, J. Therm. Spray Technol., 2007, 16(5), p 791-797

    Article  CAS  Google Scholar 

  41. A. Ganvir, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS), J. Therm. Spray Technol., 2015, 24(7), p 1195-1204

    Article  CAS  Google Scholar 

  42. F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics, J. Therm. Spray Technol., 2008, 17(5), p 685-691

    Article  CAS  Google Scholar 

  43. R. Musalek, J. Medricky, T. Tesar, J. Kotlan, Z. Pala, F. Lukac, T. Chraska, and N. Curry, Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology, J. Therm. Spray Technol., 2017, 26(1–2), p 37-46

    Article  CAS  Google Scholar 

  44. T. Kavka, J. Matějíček, P. Ctibor, and M. Hrabovský, Spraying of Metallic Powders by Hybrid Gas/Water Torch and the Effects of Inert Gas Shrouding, J. Therm. Spray Technol., 2011, 21(3–4), p 695-705

    Google Scholar 

  45. T. Tesar, R. Musalek, J. Medricky, and J. Cizek, On Growth of Suspension Plasma-Sprayed Coatings Deposited by High-Enthalpy Plasma Torch, Surf. Coatings Technol., 2019, 371, p 333-343

    Article  CAS  Google Scholar 

  46. J. Matejicek, T. Kavka, G. Bertolissi, P. Ctibor, M. Vilemova, R. Musalek, and B. Nevrla, The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications, J. Therm. Spray Technol., 2013, 22(5), p 744-755

    Article  CAS  Google Scholar 

  47. T. Tesar, R. Musalek, F. Lukac, J. Medricky, J. Cizek, V. Rimal, S. Joshi, and T. Chraska, Increasing α-Phase Content of Alumina-Chromia Coatings Deposited by Suspension Plasma Spraying Using Hybrid and Intermixed Concepts, Surf. Coatings Technol., 2019, 371, p 298-311

    Article  CAS  Google Scholar 

  48. T. Tesar, R. Musalek, J. Medricky, J. Cizek, F. Lukac, and T. Chraska, Deposition of Multiphase Coatings from Liquid Feedstock Using Hybrid Water-Stabilized Plasma Torch, in Proceedings of the International Thermal Spray Conference 2018, F. Azarmi, Ed., May 7-10, 2018, (Orlando, USA), ASM International, 2018, p 456–462

  49. M.G. Gok and G. Goller, Production and Characterisation of GZ/CYSZ Alternative Thermal Barrier Coatings with Multilayered and Functionally Graded Designs, J. Eur. Ceram. Soc., 2016, 36(7), p 1755-1764

    Article  CAS  Google Scholar 

  50. S. Mahade, D. Zhou, N. Curry, N. Markocsan, P. Nylén, and R. Vaßen, Tailored Microstructures of Gadolinium Zirconate/YSZ Multi-Layered Thermal Barrier Coatings Produced by Suspension Plasma Spray: Durability and Erosion Testing, J. Mater. Process. Technol., 2019, 264, p 283-294

    Article  CAS  Google Scholar 

  51. P. Carpio, M.D. Salvador, A. Borrell, and E. Sánchez, Thermal Behaviour of Multilayer and Functionally-Graded YSZ/Gd2Zr2O7 Coatings, Ceram. Int., 2017, 43(5), p 4048-4054

    Article  CAS  Google Scholar 

  52. V. Viswanathan, G. Dwivedi, and S. Sampath, Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance, J. Am. Ceram. Soc., 2014, 97(9), p 2770-2778

    Article  CAS  Google Scholar 

  53. O. Aranke, M. Gupta, N. Markocsan, X.-H. Li, and B. Kjellman, Microstructural Evolution and Sintering of Suspension Plasma-Sprayed Columnar Thermal Barrier Coatings, J. Therm. Spray Technol., 2019, 28(1–2), p 198-211

    Article  Google Scholar 

  54. M.A. Tagliente and M. Massaro, Preferred Orientation of ZnO Nanoparticles in Ion-Implanted Silica, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2008, 266(7), p 1055-1061

    Article  CAS  Google Scholar 

  55. R. Vassen, F. Traeger, and D. Stover, Correlation between Spraying Conditions and Microcrack Density and Their Influence on Thermal Cycling Life of Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 396-404

    Article  CAS  Google Scholar 

  56. A. Valarezo, G. Dwivedi, S. Sampath, R. Musalek, and J. Matejicek, Elastic and Anelastic Behavior of TBCs Sprayed at High-Deposition Rates, J. Therm. Spray Technol., 2014, 24(1–2), p 160-167

    Google Scholar 

  57. Y. Tan, V. Srinivasan, T. Nakamura, S. Sampath, P. Bertrand, and G. Bertrand, Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies, J. Therm. Spray Technol., 2012, 21(5), p 950-962

    Article  CAS  Google Scholar 

  58. M. Karger, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior, Surf. Coatings Technol., 2011, 206, p 16-23

    Article  CAS  Google Scholar 

  59. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736-2744

    Article  CAS  Google Scholar 

  60. R. Eriksson, S. Sjöström, H. Brodin, S. Johansson, L. Östergren, and X.-H. Li, TBC Bond Coat-Top Coat Interface Roughness: Influence on Fatigue Life and Modelling Aspects, Surf. Coatings Technol., 2013, 236, p 230-238

    Article  CAS  Google Scholar 

  61. K. Yuan, Y. Yu, and J.-F. Wen, A Study on the Thermal Cyclic Behavior of Thermal Barrier Coatings with Different MCrAlY Roughness, Vacuum, 2017, 137, p 72-80

    Article  CAS  Google Scholar 

  62. W. Nowak, D. Naumenko, G. Mor, F. Mor, D.E. Mack, R. Vassen, L. Singheiser, and W.J. Quadakkers, Effect of Processing Parameters on MCrAlY Bondcoat Roughness and Lifetime of APS-TBC Systems, Surf. Coatings Technol., 2014, 260, p 82-89

    Article  CAS  Google Scholar 

  63. M. Gupta, R. Musalek, and T. Tesar, Microstructure and Failure Analysis of Suspension Plasma Sprayed Thermal Barrier Coatings, Surf. Coatings Technol., 2020, 382, paper No. 125218, 9 p

  64. Z.-Y. Deng, J. She, Y. Inagaki, J.-F. Yang, T. Ohji, and Y. Tanaka, Reinforcement by Crack-Tip Blunting in Porous Ceramics, J. Eur. Ceram. Soc., 2004, 24(7), p 2055-2059

    Article  CAS  Google Scholar 

  65. J. Ilavsky and J.K. Stalick, Phase Composition and Its Changes during Annealing of Plasma-Sprayed YSZ, Surf. Coatings Technol., 2000, 127(2), p 120-129

    Article  CAS  Google Scholar 

  66. H.G. Scott, Phase Relationships in the Zirconia-Yttria System, J. Mater. Sci., 1975, 10(9), p 1527-1535

    Article  CAS  Google Scholar 

  67. C. Viazzi, J.-P. Bonino, F. Ansart, and A. Barnabé, Structural Study of Metastable Tetragonal YSZ Powders Produced via a Sol-Gel Route, J. Alloys Compd., 2008, 452(2), p 377-383

    Article  CAS  Google Scholar 

  68. N. Curry, W. Janikowski, Z. Pala, M. Vilémová, and N. Markocsan, Impact of Impurity Content on the Sintering Resistance and Phase Stability of Dysprosia- and Yttria-Stabilized Zirconia Thermal Barrier Coatings, J. Therm. Spray Technol., 2014, 23(1–2), p 160-169

    Article  CAS  Google Scholar 

  69. S.A. Tsipas, Effect of Dopants on the Phase Stability of Zirconia-Based Plasma Sprayed Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2010, 30(1), p 61-72

    Article  CAS  Google Scholar 

  70. L. Zhao, Y. Bai, J.J. Tang, K. Liu, C.H. Ding, J.F. Yang, and Z.H. Han, Effect of Particle In-Flight Behavior on the Composition of Thermal Barrier Coatings, Appl. Surf. Sci., 2013, 286, p 184-191

    Article  CAS  Google Scholar 

  71. M. Bai, H. Maher, Z. Pala, and T. Hussain, Microstructure and Phase Stability of Suspension High Velocity Oxy-Fuel Sprayed Yttria Stabilised Zirconia Coatings from Aqueous and Ethanol Based Suspensions, J. Eur. Ceram. Soc., 2018, 38(4), p 1878-1887

    Article  CAS  Google Scholar 

  72. A. Loganathan and A.S. Gandhi, Effect of Phase Transformations on the Fracture Toughness of t’ Yttria Stabilized Zirconia, Mater. Sci. Eng., A, 2012, 556, p 927-935

    Article  CAS  Google Scholar 

  73. E. Bakan, D.E. Mack, G. Mauer, R. Mücke, and R. Vaßen, Porosity-Property Relationships of Plasma-Sprayed Gd2Zr2O7/YSZ Thermal Barrier Coatings, J. Am. Ceram. Soc., 2015, 98(8), p 2647-2654

    Article  CAS  Google Scholar 

  74. G. Mauer, N. Schlegel, A. Guignard, R. Vaßen, and O. Guillon, Effects of Feedstock Decomposition and Evaporation on the Composition of Suspension Plasma-Sprayed Coatings, J. Therm. Spray Technol., 2015, 24(7), p 1187-1194

    Article  CAS  Google Scholar 

  75. E. Bakan, D.E. Mack, G. Mauer, and R. Vaßen, Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior, J. Am. Ceram. Soc., 2014, 97(12), p 4045-4051

    Article  CAS  Google Scholar 

  76. R.M. Leckie, S. Krämer, M. Rühle, and C.G. Levi, Thermochemical Compatibility between Alumina and ZrO2-GdO3/2 Thermal Barrier Coatings, Acta Mater., 2005, 53, p 3281-3292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support through the Project 19-10246S “Deposition mechanisms and properties of multiphase plasma sprayed coatings prepared with liquid feedstocks” funded by Czech Science Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Musalek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 2019 International Thermal Spray Conference, held on May 26-29, 2019, in Yokohama, Japan, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musalek, R., Tesar, T., Medricky, J. et al. Microstructures and Thermal Cycling Properties of Thermal Barrier Coatings Deposited by Hybrid Water-Stabilized Plasma Torch. J Therm Spray Tech 29, 444–461 (2020). https://doi.org/10.1007/s11666-020-00990-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-00990-2

Keywords

Navigation