Skip to main content
Log in

Strontium Zirconate TBC Sprayed by a High Feed-Rate Water-Stabilized Plasma Torch

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A novel thermal barrier coating (TBC) material, strontium zirconate SrZrO3, was sprayed by a high feed-rate water-stabilized plasma torch WSP 500. Stainless steel coupons were used as substrates. Coatings with a thickness of about 1.2 mm were produced, whereas the substrates were preheated over 450 °C. The torch worked at 150 kW power and was able to spray SrZrO3 with a high spray rate over 10 kg per hour. Microstructure and microhardness, phase composition, adhesion, thermal conductivity and thermal expansion were evaluated. The coating has low thermal conductivity under 1 W/m K in the interval from room temperature up to 1200 °C. Its crystallite size is slightly over 400 nm and thermal expansion 12.3 µm K−1 in the similar temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stoever, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023-2028

    Article  Google Scholar 

  2. W. Ma, D. Mack, J. Malzbender, R. Vassen, and D. Stoever, Yb2O3 and Gd2O3 Doped Strontium Zirconate for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2008, 28, p 3071-3081

    Article  Google Scholar 

  3. S. Hasegawa, T. Sugimoto, and T. Hashimoto, Investigation of Structural Phase Transition Behavior of SrZrO3 by Thermal Analyses and High-temperature X-ray Diffraction, Solid State Ion., 2010, 181, p 1091-1097

    Article  Google Scholar 

  4. C.J. Howard, K.S. Knight, B.J. Kennedy, and E.H. Kisi, The Structural Phase Transitions in Strontium Zirconate Revisited, J. Phys. Condens. Matter, 2000, 12(45), p 679-683

    Article  Google Scholar 

  5. A. Pragatheeswaran, P.V. Ananthapadmanabhan, Y. Chakravarthy, S. Bhandari, T.K. Thiyagarajan, N. Tiwari, T.K. Saha, and K. Ramachandran, Plasma Spray Deposition and Characterization of Strontium Zirconate Coatings, Ceram. Int., 2014, 40, p 10441-10446

    Article  Google Scholar 

  6. L. Wang, P. Zhang, M.H. Habibi, J.I. Eldridge, and S.M. Guo, Infrared Radiative Properties of Plasma-sprayed Strontium Zirconate, Mater. Lett., 2014, 137, p 5-8

    Article  Google Scholar 

  7. P. Strunz, G. Schumacher, R. Vassen, A. Wiedenmann, and V. Ryukhtin, In Situ Small-Angle Neutron Scattering Study of La2Zr2O7 and SrZrO3 Ceramics for Thermal Barrier Coatings, Scr. Mater., 2006, 55, p 545-548

    Article  Google Scholar 

  8. G.E. Witz, H.-P. Bossmann, V. Shklover, and S. Bachegovda, Multi Layer Thermal Barrier Coating, United States Patent, 8,216,689 B2, 2012

  9. L. Cai, W. Ma, B. Ma, F. Guo, W. Cen, H. Dong, and Y. Shuang, Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS), J. Therm. Spray Technol., 2017, 26, p 1076-1083

    Article  Google Scholar 

  10. J. Muller, K.D. Kreuer, J. Maier, S. Matsuo, and M. Ishigame, A Conductivity and Thermal Gravimetric Analysis of a Y-doped SrZrO3 Single Crystal, Solid State Ion., 1997, 97, p 421-427

    Article  Google Scholar 

  11. X. Li, W. Ma, J. Wen, Y. Bai, L. Sun, B. Chen, H. Dong, and Y. Shuang, Preparation of SrZrO3 Thermal Barrier Coating by Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2017, 26, p 371-377

    Article  Google Scholar 

  12. M. Hrabovsky, Water-Stabilized Plasma Generators, Pure Appl. Chem., 1998, 70(6), p 1157-1162

    Article  Google Scholar 

  13. P. Ctibor and M. Hrabovsky, Plasma Sprayed TiO2: The Influence of Power of an Electric Supply on Particle Parameters in the Flight and Character of Sprayed Coating, J. Eur. Ceram. Soc., 2010, 30(15), p 3131-3136

    Article  Google Scholar 

  14. J. Jenista, H. Takana, H. Nishiyama, M. Bartlova, V. Aubrecht, P. Krenek, M. Hrabovsky, T. Kavka, V. Sember, and A. Maslani, Integrated Parametric Study of a Hybrid-stabilized Argon-Water Arc Under Subsonic, Transonic and Supersonic Plasma Flow Regimes, J. Phys. D Appl. Phys., 2011, 44(43), p 1-20

    Article  Google Scholar 

  15. W. Ma, D. Mack, R. Vassen, and D. Stoever, Perovskite Type Strontium Zirconate as a New Material for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2630-2635

    Article  Google Scholar 

  16. A.A. Kulkarni, A. Goland, H. Herman, A.J. Allen, J. Ilavsky, G.G. Long, C.A. Johnson, and J.A. Ruud, Microstructure-Property Correlations in Industrial Thermal Barrier Coatings, J. Am. Ceram. Soc., 2004, 87(7), p 1294-1300

    Article  Google Scholar 

  17. ASTM C-1624: Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. ASTM International, 2005

  18. I. Barin, Thermochemical Data of Pure Substances, 3rd ed., Wiley, New York, 1997

    Google Scholar 

  19. P. Ctibor, J. Kubát, B. Nevrlá, and Z. Pala, Plasma Spraying of Cerium-doped YAG, J. Mater. Res., 2014, 29(19), p 2344-2351

    Article  Google Scholar 

  20. P. Ctibor, J. Sedláček, and Z. Pala, Dielectric and Electrochemical Properties Through-thickness Mapping on Extremely Thick Plasma Sprayed TiO2, Ceram. Int., 2016, 42(6), p 7183-7191

    Article  Google Scholar 

  21. P. Ctibor, B. Nevrlá, Z. Pala, J. Sedláček, J. Soumar, T. Kubatík, K. Neufuss, M. Vilémová, and J. Medřický, Study on the Plasma Sprayed Amorphous Diopside and Annealed Fine-Grained Crystalline Diopside, Ceram. Int., 2015, 41(9), p 10578-10586

    Article  Google Scholar 

  22. Y. Xie and H.M. Hawthorne, The Damage Mechanisms of Several Plasma-Sprayed Ceramic Coatings in Controlled Scratching, Wear, 1999, 233–235, p 293-305

    Article  Google Scholar 

  23. EN ISO 20502: Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics). Determination of Adhesion of Ceramic Coatings by Scratch Testing. International Organization for Standardization, 2016

  24. S. Yamanaka, K. Kurosaki, T. Maekawa, T. Matsuda, S. Kobayashi, and M. Uno, Thermochemical and Thermophysical Properties of Alkaline-Earth Perovskites, J. Nucl. Mater., 2005, 344, p 61-66

    Article  Google Scholar 

  25. B.J. Kennedy, C.J. Howard, and B.C. Chakoumakos, High-Temperature Phase Transitions in SrZrO3, Phys. Rev. B, 1999, 59, p 4023-4030

    Article  Google Scholar 

  26. T. Matsuda, S. Yamanaka, K. Kurosaki, and S. Kobayashi, High Temperature Phase Transitions of SrZrO3, J. Alloys Compd., 2003, 351, p 43-46

    Article  Google Scholar 

  27. W. Pan, S.R. Phillpot, C. Wan, A. Chernatynskiy, and Z. Qu, Low Thermal Conductivity Oxides, Mater. Res. Bull., 2012, 37, p 917-922

    Article  Google Scholar 

Download references

Acknowledgments

The research was sponsored by the Technology agency of the Czech Republic under Project CVPU—TE02000011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ctibor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ctibor, P., Nevrla, B., Cizek, J. et al. Strontium Zirconate TBC Sprayed by a High Feed-Rate Water-Stabilized Plasma Torch. J Therm Spray Tech 26, 1804–1809 (2017). https://doi.org/10.1007/s11666-017-0641-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0641-7

Keywords

Navigation