Skip to main content

Advertisement

Log in

Characteristics and Sources of PAHs, Hopanes, and Elements in PM10 Aerosol in Tulsipur and Charikot (Nepal)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Concentration of PAHs, hopanes, and elements in PM10 aerosol samples was measured in two Nepalese urban centers, Tulsipur (725 m above sea level; 150,000 inhabitants) and Charikot (1,550 m above sea level; 23,000 inhabitants) in the monsoon period (August 2018) and pre-monsoon period (April–May 2019). The 24-h PM10 limit value of 50 µg m−3 for human health was significantly exceeded at all locations, and the Nepal concentration limit of 150 µg m−3 was exceeded at Tulsipur-bus station, Tulsipur-village, and Charikot-hospital in the pre-monsoon season. The average daily PM10 and PAHs concentrations showed seasonal variations, with lower concentrations in the monsoon season and the higher values in pre-monsoon season. The average daily PM10 and PAHs concentrations in the both sites were 133 μg m−3 and 23.8 ng m−3 in the pre-monsoon period and 49.6 μg m−3 and 2.30 ng m−3 in the monsoon period, respectively. The average daily hopane concentration during the pre-monsoon period was 1.40 ng m−3 in Tulsipur and 0.70 ng m−3 in Charikot. The IndP / (IndP + BghiP) ratio was higher than 0.5 during monsoon period, indicating combustion of biomass and charcoal burning. IndP / (IndP + BghiP) between 0.2 and 0.5 during pre-monsoon season indicates petroleum combustion. Fla / (Fla + Pyr) ratio between 0.3 and 0.5 during pre-monsoon and monsoon periods indicates high proportion of petroleum product combustion. The biomass burning associated with dense traffic in the center of the two cities was the main source of PAHs. The average daily element concentration was 6.80 ng m−3 in both locations during the monsoon period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adhikary, B., Carmichael, G.R., Tang, Y., Leung, L.R., Qian, Y., Schauer, J.J., Stone, E.A.,

  • Aryal, R. K., Lee, B. K., Karki, R., Gurung, A., Kandasamy, J., Pathak, B. K., Sharma, S., & Giri, N. (2008). Seasonal PM10 dynamics in Kathmandu Valley. Atmospheric Environment, 42(37), 8623–8633. https://doi.org/10.1016/j.atmosenv.2008.08.016

    Article  CAS  Google Scholar 

  • Bhargava, A., Khanna, R., Bhargava, S., & Kumar, S. (2004). Exposure risk to carcinogenic PAHs in indoorair during biomass combustion whilst cooking in rural India. Atmospheric Environment, 38(28), 4761–4767. https://doi.org/10.1016/j.atmosenv.2004.05.012

    Article  CAS  Google Scholar 

  • Biswas, K., Chatterjee, A., Chakraborty, J. (2020). Comparison of air pollutants between Kolkata and Siliguri, India, and its relationship to temperature change. Journal of Geovisualization and Spatial Analysis, 4(25). https://doi.org/10.1007/s41651-020-00065-4.

  • Brunekreef, B. Holgate, S.T. Air pollution and health (2002). The Lancet, 360(9341), 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8.

  • Bonasoni, P., Laj, P., Marinoni, A., Sprenger, M., Angelini, F., Arduini, J., Bonafe, U., Calzolari, F., Colombo, T., Decesari, S., Di Biagio, C., Di Sarra, A., Evangelisti, F., Duchi, R., Facchini, M., Fuzzi, S., Gobbi, G., Maione, M., Panday, A., … Cristofanelli, P. (2010). Atmospheric brown clouds in the Himalayas: First two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmospheric Chemistry and Physics, 10, 7515–7531. https://doi.org/10.5194/acp-10-7515-2010

    Article  CAS  Google Scholar 

  • Brunekreef, B., & Maynard, R. L. (2008). A note on the 2008 EU standards for particulate matter. Atmospheric Environment, 42(26), 6425–6430. https://doi.org/10.1016/j.atmosenv.2008.04.036

    Article  CAS  Google Scholar 

  • Cairsens (2020). Cairsens PM microsensors. Technical Manual. ENVEA. Retrieved July 2021 from www.envea.global.

  • Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., et al. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99, 293–302. https://doi.org/10.1016/j.envint.2016.12.007

    Article  CAS  Google Scholar 

  • Cavaliere, A., Carotenuto, F., Di Gennaro, F., Gioli, B., Gualtieri, G., Martelli, F., Alessandro Matese, A., Toscano, P., Vagnoli, C., & Zaldei, A. (2018). Development of low-cost air quality stations for next generation monitoring networks: calibration and validation of PM2.5 and PM10 sensors. Sensors, 18(9), 2843. https://doi.org/10.3390/s18092843

    Article  CAS  Google Scholar 

  • Chen, P., Kang, S., Li, C., Rupakheti, M., Yan, F., Li, Q., Ji, Z., Zhang, Q., Luo, W., & Sillanpää, M. (2015). Characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric aerosols in the Kathmandu Valley. Nepal. Science of the Total Environment, 538, 86–92. https://doi.org/10.1016/j.scitotenv.2015.08.006

    Article  CAS  Google Scholar 

  • Chen, P., Li, C., Kang, S., Rupakheti, M., Panday, A. K., Yan, F., Li, Q., Zhang, Q., Guo, J., Ji, Z., Rupakheti, D., & Luo, W. (2017). Characteristics of particulate-phase polycyclic aromatic hydrocarbons (PAHs) in the atmosphere over the Central Himalayas. Aerosol and Air Quality Research, 17(12), 2942–2954. https://doi.org/10.4209/aaqr.2016.09.0385

    Article  CAS  Google Scholar 

  • Cigánková, H., Mikuška, P., Hegrová, J., Pokorná, P., Schwarz, J., & Krajčovič, J. (2021a). Seasonal variation and sources of elements in urban submicron and fine aerosol in Brno, Czech Republic. Aerosol and Air Quality Research, 21(5), 200556. https://doi.org/10.4209/aaqr.2020.09.0556

    Article  CAS  Google Scholar 

  • Cigánková, H., Mikuška, P., Hegrová, J., Krajčovič, J. (2021b). Comparison of oxidative potential of PM1 and PM2.5 urban aerosol and bioaccessibility of associated elements in three simulated lung fluids. Science of The Total Environment, 800, 149502. https://doi.org/10.1016/j.scitotenv.2021b.149502.

  • Decesari, S., Facchini, M. C., Carbone, C., Giulianelli, L., Rinaldi, M., Finessi, E., Fuzzi, S., Marinoni, A., Cristofanelli, P., Duchi, R., Bonasoni, P., Vuillermoz, E., Cozic, J., Jafferzo, J. L., & Laj, P. (2010). Chemical composition of PM10 and PM1 at the highaltitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.). Atmospheric Chemistry and Physics, 10, 4583–4596. https://doi.org/10.5194/acp-10-4583-2010

    Article  CAS  Google Scholar 

  • Dokiya, Y., Maruta, E., Yoshikawa, T., Ishimori, H., & Tsurumi, M. (1992). Chemical species in the deposition at some peaks of the Himalaya. Environmental Science, 5, 109–114.

    Google Scholar 

  • Filonchyk, M., & Yan, H. (2018). The characteristics of air pollutants during different seasons in the urban area of Lanzhou. Northwest China. Environmental Earth Sciences, 77, 763. https://doi.org/10.1007/s12665-018-7925-1

    Article  CAS  Google Scholar 

  • Global Air, 2020. State of Global Air 2020 reports air pollution's impact on neonatal mortality. https://www.healtheffects.org/announcements/state-global-air-2020-reports-air-pollutions-impact-neonatal-mortality.

  • Giri, D., Murthy, V.K., Adhikary, P.R., Chhetri, R.B., Khanal, S.N., Sharma, C.K. (2004). Descriptive statistical analysis of PM10 values in selected air monitoring sites in Kathmandu Valley. RONAST, Nepal.

  • Giri, D., Murthy, V. K., Adhikary, P. R., & Khanal, S. N. (2007). Estimation of number of deaths associated with exposure to excess ambient PM10 air pollution. International Journal of Environmental Science and Technology, 4, 183–188. https://doi.org/10.1007/BF03326272

    Article  CAS  Google Scholar 

  • Giri, D., Murthy, V. K., & Adhikary, P. R. (2008). The influence of meteorological conditions on PM10 concentrations in Kathmandu Valley. International Journal of Environmental Research, 2(1), 49–60. https://doi.org/10.22059/ijer.2010.175

    Article  Google Scholar 

  • Gong, P., Wang, X., & Yao, T. (2011). Ambient distribution of particulate-and gas-phase n-alkanes and polycyclic aromatic hydrocarbons in the Tibetan Plateau. Environmental Earth Sciences, 64, 1703–1711. https://doi.org/10.1007/s12665-011-0974-3

    Article  CAS  Google Scholar 

  • Gurung, A., Michelle L. Bell, L. M. (2013). The state of scientific evidence on air pollution and human health in Nepal. Environmental Research, 124, 54–64. https://doi.org/10.1016/j.envres.2013.03.007.

  • International Commission on Radiological Protection (1994). Human respiratory tract model for radiological protection; International Commission on Radiological Protection: Stockholm, Sweden, 1994.

  • International Journal of Environmental Analytical Chemistry, 89(2), 67–82. https://doi.org/10.1080/03067310802526985

  • Jha, P. K., & Lekhak, D. K. (2003). Air pollution studies and management efforts in Nepal. Pure and Applied Geophysics, 160, 341–348. https://doi.org/10.1007/s00024-003-8782-7

    Article  Google Scholar 

  • Karbowska, B. (2016). Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environmental Monitoring and Assessment, 188(640). https://doi.org/10.1007/s10661-016-5647-y.

  • Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005

    Article  CAS  Google Scholar 

  • Kishida, M., Mio, C., Imamura, K., Kondo, A., Kaga, A., Shrestha, M.L., Takenaka, N., Maeda, Y., Sapkota, B., Fujimori, K., Shibutani, Y., Bandow, H. (2009). Temporal variation of atmospheric polycyclic aromatic hydrocarbon concentrations in PM10 from the Kathmandu Valley and their gas-particle concentrations in winter.

  • Křůmal, K., & Mikuška, P. (2020). Mass concentrations and lung cancer risk assessment of PAHs bound to PM1 aerosol in six industrial, urban and rural areas in the Czech Republic, Central Europe. Atmospheric Pollution Research, 11, 401–408. https://doi.org/10.1016/j.apr.2019.11.012

    Article  CAS  Google Scholar 

  • Křůmal, K., Mikuška, P., & Večeřa, Z. (2013). Polycyclic aromatic hydrocarbons and hopanes in PM1 aerosols in urban areas. Atmospheric Environment, 67, 27–37. https://doi.org/10.1016/j.atmosenv.2012.10.033

    Article  CAS  Google Scholar 

  • Křůmal, K., Mikuška, P., & Večeřa, Z. (2017). Characterization of organic compounds in winter PM1 aerosols in a small industrial town. Atmospheric Pollution Research, 8, 930–939. https://doi.org/10.1016/j.apr.2017.03.003

    Article  Google Scholar 

  • Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., & Britter, R. (2015). The rise of low-cost sensing for managing air pollution in cities. Environment International, 75, 199–205. https://doi.org/10.1016/j.envint.2014.11.019

    Article  Google Scholar 

  •  Lakhani, A. (2012) Source apportionment of particle bound polycyclic aromatic hydrocarbons at an industrial location in Agra, India. The Scientific World Journal, p. 10. https://doi.org/10.1100/2012/781291

  • Lewis, A.C., Von Schneidemesser, E., Peltier, R.E. (2018). Low-cost sensors for the measurement of atmospheric composition: overview of topic and future applications. WMO-No.121. World Meteorological Organisation. orcid.org/0000–0002–4075–3651.

  • Majumder, A. K., Nazmul Islam, K. M., Bajracharya, R. M., & Carter, W. S. (2012). Assessment of occupational and ambient air quality of traffic police personnel of the Kathmandu valley, Nepal; in view of atmospheric particulate matter concentrations (PM10). Atmospheric Pollution Research, 3(1), 132–142. https://doi.org/10.5094/APR.2012.013

    Article  CAS  Google Scholar 

  • Masiol, M., Hofer, A., Squizzato, S., Piazza, R., Rampazzo, G., & Pavoni, B. (2012). Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: A source apportionment. Atmospheric Environment, 60, 375–382. https://doi.org/10.1016/j.atmosenv.2012.06.073

    Article  CAS  Google Scholar 

  • McKercher, G. R., Salmond, J. A., & Vanos, J. K. (2017). Characteristics and applications of small, portable gaseous air pollution monitors. Environmental Pollution, 223, 102–110. https://doi.org/10.1016/j.envpol.2016.12.045

    Article  CAS  Google Scholar 

  • Meteoblue (2006–2022). Počasí Brno. Meteoblue. Retrieved November 2019 from www.meteoblue.com/cs/po%C4%8Das%C3%AD/t%C3%BDden/tuls%c4%abpur_nep%c3%a1l_1282635.

  • Mikuška, P., Křůmal, K., & Večeřa, Z. (2015). Characterization of organic compounds in the PM2.5 aerosols in winter in an industrial urban area. Atmospheric Environment, 105, 97–108. https://doi.org/10.1016/j.atmosenv.2015.01.028

    Article  CAS  Google Scholar 

  • Mikuška, P., Vojtěšek, M., Křůmal, K., Mikušková-Čampulová, M., Michálek, J., & Večeřa, Z. (2020). Characterization and source identification of elements and water-soluble ions in submicrometre aerosols in Brno and Šlapanice (Czech Republic). Atmosphere, 11(7), 688. https://doi.org/10.3390/atmos11070688

    Article  CAS  Google Scholar 

  • Nasir, Z. A., Colbeck, I., Ali, Z., & Ahmed, S. (2015). Heavy elements composition of particulate matter in rural residential built environments in Pakistan. The Journal of Animal & Plant Sciences, 25(3), 706–712.

    Google Scholar 

  • Nazir, R., Shaheen, N., & Shah, M. H. (2011). Indoor/outdoor relationship of trace elementss in the atmospheric particulate matter of an industrial area. Atmospheric Research, 101(3), 765–772. https://doi.org/10.1016/j.atmosres.2011.05.003

    Article  CAS  Google Scholar 

  • Pokhrel, B., Gong, P., Wang, X., Wang, Ch., & Gao, S. (2018). Polycyclic aromatic hydrocarbons in the urban atmosphere of Nepal: Distribution, sources, seasonal trends, and cancer risk. Science of the Total Environment, 618, 1583–1590. https://doi.org/10.1016/j.scitotenv.2017.09.329

    Article  CAS  Google Scholar 

  • Rajput, P., Sarin, M., & Kundu, S. (2013). Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE-Himalaya: abundances and chemical characteristics. Atmospheric Pollution Research, 4(2), 214–221.

    Article  CAS  Google Scholar 

  • Rajput, P., Sarin, M., Sharma, D., & Singht, D. (2014). Atmospheric polycyclic aromatic hydrocarbons and isomerratios as tracers of biomass burning emissions in Northern India. Environmental Science and Pollution Research, 21, 5724–5729. https://doi.org/10.1007/s11356-014-2496-5

    Article  CAS  Google Scholar 

  • Ramanathan, V., Ramana, M.V. (2007). Characterization of the seasonal cycle of South Asian aerosols: a regional-scale modeling analysis. Journal of Geophysical Research. Atmosphere, 112, /https://doi.org/10.1029/2006JD008143.

  • Ravindra, K., Ranjeet, S., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. https://doi.org/10.1016/J.ATMOSENV.2007.12.010

    Article  CAS  Google Scholar 

  • Sahu, R., Dixit, K. K., Mishra, S., Kumar, P., Shukla, A. K., Sutaria, R., Tiwari, S., & Tripathi, S. N. (2020). Validation of low-cost sensors in measuring real-time PM10 concentrations at two sites in Delhi National Capital Region. Sensors, 20(5), 1347. https://doi.org/10.3390/s20051347

    Article  Google Scholar 

  • Saud, B., Paudel, G. (2018). The threat of ambient air pollution in Kathmandu, Nepal. Journal of Environmental and Public Health, 2018, Article ID 1504591, https://doi.org/10.1155/2018/1504591.

  • Schroeder, W. H., Dobson, M., Kane, D. M., & Johnson, N. D. (1987). Toxic trace elements associated with airborne particulate matter: A review. Journal of Air and Waste Management Association, 37, 1267–1285. https://doi.org/10.1080/08940630.1987.10466321

    Article  CAS  Google Scholar 

  • Seinfeld, J.H.; Pandis, S.N. Atmospheric chemistry and physics. From Air Pollution to Climate Change; Wiley & Sons: New York, NY, USA, 1998.

  • Sellegri, K., Laj, P., Venzac, H., Boulon, J., Picard, D., Villani, P., Bonasoni, P., Marinoni, A., Cristofanelli, P., & Vuillermoz, E. (2010). Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal Climate Observatory-Pyramid (5079 m). Nepal. Atmospheric Chemistry and Physics, 10(21), 6537–6566. https://doi.org/10.5194/acp-10-10679-2010

    Article  CAS  Google Scholar 

  • Sill, M., Kirkby, J. (2013). Atlas of Nepal in the Modern World (Sustainable Development Set Book 4). 164 p.

  • Simoneit, B., Medeiros, P. M., & Didyk, B. (2005). Combustion products of plastics as indicators for refuse burning in the atmosphere. Environmental Science & Technology, 39(18), 6961–6970. https://doi.org/10.1021/es050767x

    Article  CAS  Google Scholar 

  • Tasić, V., Kovačević, R., Maluckov, B., Apostolovski-Trujić, T., Matić, B., Cocić, M., & Šteharnik, M. (2017). The content of As and heavy metals in TSP and PM10 near Copper smelter in Bor, Serbia. Water, Air and Soil Pollution, 228, 230. https://doi.org/10.1007/s11270-017-3393-6

    Article  CAS  Google Scholar 

  • Torres, O., Jethva, H., Ahn, C., Jaross, G., & Loyola, D. G. (2020). TROPOMI aerosol products: Evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020. Atmospheric Measurement Techniques, 13(12), 6789–6806. https://doi.org/10.5194/amt-13-6789-2020

    Article  Google Scholar 

  • Tyagi, V., Gurjar, B. R., Joshi, N., & Kuma, P. (2012). PM10 and heavy elementss in suburban and rural atmospheric environments of Northern India. Journal of Hazardous, Toxic, and Radioactive Waste, 16(2), 175–182. https://doi.org/10.1061/%28ASCE%29HZ.2153-5515.0000101

    Article  CAS  Google Scholar 

  • Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M., Hopke, P. K., Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A. S. H., Hueglin, C., Bloemen, H., Wåhlin, P., Vecchi, R., Miranda, A. I., Kasper-Giebl, A., Maenhaut, W., & Hitzenberger, R. (2008). Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 39(10), 827–849. https://doi.org/10.1016/j.jaerosci.2008.05.007

    Article  CAS  Google Scholar 

  • Waldorf, D. (2018, March 16). NEPAL Systematic Country Diagnostic. A new approach for a federal Nepal. The World Bank, Washington. Retrieved November 2018, from https://www.worldbank.org/en/region/sar/publication/systematic-country-diagnostic-a-new-approach-for-a-federal-nepal.

  • Wang, G., Kawamura, K., Xie, M., Hu, S., Gao, S., Cao, J., An, Z., & Wang, Z. (2009). Site-distribution of n-alkanes, PAHs and hopanes in the urban, mountain and marine atmosphere over East Asia. Atmospheric Chemistry and Physics, 9(22), 8869–8882. https://doi.org/10.5194/acp-9-8869-2009

    Article  CAS  Google Scholar 

  • Wang, T., Xia, Z., Wu, M., Zhang, Q., Sun, S., Yin, J., Zhou, Y., & Yang, H. (2017). Pollution characteristics, sources and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in a new urban districts of Nanjing, China. Journal of Environmental Sciences, 55, 118–128. https://doi.org/10.1016/j.jes.2016.06.025

    Article  CAS  Google Scholar 

  • World Health Organization (2002). Air quality guidelines for Europe, 2nd edition. World Health Organization, 91. Regional office for Europe. Retrieved August, 2019f from https://apps.who.int/iris/handle/10665/107335.

  • World Health Organization (2006). Air quality guidelines, Global update 2005. World Health Organisation. Retrieved July 2021 from https://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf

  • World Health Organization (2014). World health statistics 2014. World Health Organization. Retrieved Juny 2020 from https://digitallibrary.un.org/record/3868753.

  • Yu, Y., Panday, A., Hodson, E., Galle, B., & Prinn, R. (2008). Monocyclic aromatic hydrocarbons in Kathmandu during the winter season. Water, Air and Soil Pollution, 191, 71–81. https://doi.org/10.1007/s11270-007-9607-6

    Article  CAS  Google Scholar 

  • Yunker, M., Macdonald, R., Vingarzan, R., Mitchell, R., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Grant Agency of the Czech Republic under the project No. 503/20/02203S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Zapletal.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapletal, M., Cudlín, P., Khadka, C. et al. Characteristics and Sources of PAHs, Hopanes, and Elements in PM10 Aerosol in Tulsipur and Charikot (Nepal). Water Air Soil Pollut 233, 486 (2022). https://doi.org/10.1007/s11270-022-05953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05953-7

Keywords

Navigation