Skip to main content
Log in

The Radius of Metric Subregularity

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

There is a basic paradigm, called here the radius of well-posedness, which quantifies the “distance” from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bürgisser, P., Cucker, F.: Condition. The Geometry of Numerical Algorithms Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 349. Springer, Heidelberg (2013)

    Google Scholar 

  2. Cibulka, R., Dontchev, A.L., Kruger, A.Y.: Strong metric subregularity of mappings in variational analysis and optimization. J. Math. Anal. Appl. 457(2), 1247–1282 (2018). https://doi.org/10.1016/j.jmaa.2016.11.045

    Article  MathSciNet  MATH  Google Scholar 

  3. Dontchev, A.L., Lewis, A.S., Rockafellar, R.T.: The radius of metric regularity. Trans. Amer. Math. Soc. 355(2), 493–517 (2003)

    Article  MathSciNet  Google Scholar 

  4. Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal. 12(1-2), 79–109 (2004)

    Article  MathSciNet  Google Scholar 

  5. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis, 2 edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014)

    Google Scholar 

  6. Durea, M., Strugariu, R.: Metric subregularity of composition set-valued mappings with applications to fixed point theory. Set-Valued Var. Anal. 24(2), 231–251 (2016). https://doi.org/10.1007/s11228-015-0327-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrica 1, 211–218 (1936)

    Article  Google Scholar 

  8. Gfrerer, H.: First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21(4), 1439–1474 (2011)

    Article  MathSciNet  Google Scholar 

  9. Gfrerer, H.: On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued Var. Anal. 21(2), 151–176 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gfrerer, H., Mordukhovich, B.S.: Complete characterizations of tilt stability in nonlinear programming under weakest qualification conditions. SIAM J. Optim. 25(4), 2081–2119 (2015). https://doi.org/10.1137/15M1012608

    Article  MathSciNet  MATH  Google Scholar 

  11. Gfrerer, H., Outrata, J.V.: On Lipschitzian properties of implicit multifunctions. SIAM J. Optim. 26(4), 2160–2189 (2016). https://doi.org/10.1137/15M1052299

    Article  MathSciNet  MATH  Google Scholar 

  12. Ginchev, I., Mordukhovich, B.S.: On directionally dependent subdifferentials. C. R. Acad. Bulgare Sci. 64(4), 497–508 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Graves, L.M.: Some mapping theorems. Duke Math. J. 17, 111–114 (1950)

    Article  MathSciNet  Google Scholar 

  14. Ioffe, A.D.: On stability estimates for the regularity property of maps. In: Topological Methods, Variational Methods and their Applications (Taiyuan, 2002), pp 133–142. World Sci. Publ, River Edge (2003)

  15. Ioffe, A.D.: Variational Analysis of Regular Mappings. Theory and Applications. Springer Monographs in Mathematics Springer (2017)

  16. Ioffe, A.D., Sekiguchi, Y.: Regularity estimates for convex multifunctions. Math. Program., Ser. B 117(1-2), 255–270 (2009). https://doi.org/10.1007/s10107-007-0157-x

    Article  MathSciNet  MATH  Google Scholar 

  17. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications Nonconvex Optimization and its Applications, vol. 60. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  18. Kruger, A.Y.: Error bounds and Hölder metric subregularity. Set-Valued Var. Anal. 23(4), 705–736 (2015). https://doi.org/10.1007/s11228-015-0330-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79 (2015). https://doi.org/10.1080/02331934.2014.938074

    Article  MathSciNet  MATH  Google Scholar 

  20. Kruger, A.Y., Luke, D.R., Thao, N.H.: About subtransversality of collections of sets. Set-Valued Var. Anal. 25(4), 701–729 (2017). https://doi.org/10.1007/s11228-017-0436-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Kruger, A.Y., Thao, N.H.: Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164(1), 41–67 (2015). https://doi.org/10.1007/s10957-014-0556-0

    Article  MathSciNet  MATH  Google Scholar 

  22. Maréchal, M.: Metric subregularity in generalized equations. J. Optim. Theory Appl. 176(3), 527–540 (2018). https://doi.org/10.1007/s10957-018-1246-0

    Article  MathSciNet  MATH  Google Scholar 

  23. Maréchal, M., Correa, R.: Error bounds, metric subregularity and stability in generalized Nash equilibrium problems with nonsmooth payoff functions. Optimization 65(10), 1829–1854 (2016). https://doi.org/10.1080/02331934.2016.1213248

    Article  MathSciNet  MATH  Google Scholar 

  24. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15(6), 959–972 (1977)

    Article  MathSciNet  Google Scholar 

  25. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer, Berlin (2006)

    Book  Google Scholar 

  26. Ngai, H.V., Phan, N.T.: Metric subregularity of multifunctions: First and second order infinitesimal characterizations. Math. Oper. Res. 40(3), 703–724 (2015). https://doi.org/10.1287/moor.2014.0691

    Article  MathSciNet  MATH  Google Scholar 

  27. Ngai, H.V., Tron, N.H., Tinh, P.N.: Directional Hölder metric subregularity and application to tangent cones. J. Convex Anal. 24(2), 417–457 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Peña, J.: On the block-structured distance to non-surjectivity of sublinear mappings. Math. Program., Ser. A 103(3), 561–573 (2005). https://doi.org/10.1007/s10107-004-0514-y

    Article  MathSciNet  MATH  Google Scholar 

  29. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Programming Stud 14, 206–214 (1981). Mathematical Programming at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979)

    Article  MathSciNet  Google Scholar 

  30. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  31. Uderzo, A.: A strong metric subregularity analysis of nonsmooth mappings via steepest displacement rate. J. Optim. Theory Appl. 171(2), 573–599 (2016). https://doi.org/10.1007/s10957-016-0952-8

    Article  MathSciNet  MATH  Google Scholar 

  32. Ye, J.J., Zhou, J.: Verifiable sufficient conditions for the error bound property of second-order cone complementarity problems. Math. Program., Ser. A 171(1-2), 361–395 (2018). https://doi.org/10.1007/s10107-017-1193-9

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng, X.Y.: Metric subregularity for a multifunction. J. Math. Study 49(4), 379–392 (2016). https://doi.org/10.4208/jms.v49n4.16.03

    Article  MathSciNet  MATH  Google Scholar 

  34. Zheng, X.Y., Zhu, J.: Generalized metric subregularity and regularity with respect to an admissible function. SIAM J. Optim. 26(1), 535–563 (2016). https://doi.org/10.1137/15M1016345

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Kruger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Professor Alexander Ioffe on the occasion of his 80th birthday

Supported by the National Science Foundation (NSF) grant 156229; the Austrian Science Fund (FWF) grants P26640-N25, P26132-N25 and P29190-N32; the Australian Research Council (ARC) grant DP160100854 and the Grant Agency of the Czech Republic (GACR) grants 17-04301S and 17-08182S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dontchev, A.L., Gfrerer, H., Kruger, A.Y. et al. The Radius of Metric Subregularity. Set-Valued Var. Anal 28, 451–473 (2020). https://doi.org/10.1007/s11228-019-00523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-019-00523-2

Keywords

Mathematics Subject Classification (2010)

Navigation