Skip to main content
Log in

Utilization of silica gel nanoparticles for selective capturing aqueous uranyl ion

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Silica gel nanoparticles (SGNPs) have been successfully prepared and utilized for capturing aqueous uranyl ions (VI) by batch sorption. The IR, SEM, PXRD, TGA, and DSC characterize and study the nanoparticles. The maximum efficiency of SGNPs toward capturing UO22+ ions is found at pHi = 7, Ci = 1.0 mg L−1, T = 25 °C, 80 rpm, and dosage = 2 g L−1 achieving 99% within 40 min of equilibrium sorption’s. U(VI) ion sorption follows the Freundlich isotherm model (R2 > 0.999) and the pseudo-second-order kinetic model (R2 > 0.999). Based on these promising results, we candidate silica gel nanoparticles (SGNPs) as an effective filter for capturing low concentrations of uranium (VI) ions from the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Diamond G, Wohlers D, Plewak D, Llados F, Ingerman L, Wilbur S; Scinicariello F, Roney N, Faroon O (2013) Health effects. Agency for toxic substances and disease registry (US).

  2. Barbette F, Rascalou F, Chollet H, Babouhot JL, Denat F, Guilard R (2004) Extraction of uranyl ions from aqueous solutions using silica-gel-bound macrocycles for alpha contaminated wastewater treatment. Analytica Chim Acta 502(2):179–187

    Article  CAS  Google Scholar 

  3. Yu J, Bai H, Wang J, Li Z, Jiao C, Liu Q, Zhang M, Liu L (2013) Synthesis of alumina nanosheets via supercritical fluid technology with high uranyl adsorptive capacity. New J Chem 37:366–372

    Article  CAS  Google Scholar 

  4. Yang D, Zheng ZF, Zhu HY, Liu HW, Gao XP (2008) Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv Mater 20:2777–3278

    Article  CAS  PubMed  Google Scholar 

  5. Jin C, Hu J, Wang J, Xie C, Tong Y, Zhang L, Zhou J, Guo X, Wu G (2017) An amidoximated-UHMEPE fiber for selective and high efficient removal of uranyl and thorium from acid aqueous solution. Adv Chem Eng Sci 7:45–59

    Article  CAS  Google Scholar 

  6. Barber PS, Griggs CS, Rogers RD, Kelley SP, Wallace S (2014) Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chem 4:1828–1836

    Article  Google Scholar 

  7. Saini AS, Melo JS (2013) Biosorption of uranium by melanin: kinetic, equilibrium and thermodynamic studies. Bioresource Technol 149:155–162

    Article  CAS  Google Scholar 

  8. Yi Z, Yao J, Zhu M, Chen H, Wang F, Liu X (2016) Uranium biosorption from aqueous solution by the submerged aquatic plant, Hydrilla verticillata. Water Sci Technol 592

  9. Simon FG, Biermann V, Peplinski B (2008) Uranium removal from groundwater using hydroxyapatite. Appl Geochem 23(8):2137–2145

    Article  CAS  Google Scholar 

  10. Popa K (2013) Sorption of uranium on lead hydroxyapatite. J Radioanal Nucl Chem 298:1527–1532

    Article  CAS  Google Scholar 

  11. Motawie AM, Mahmoud KF, El-Sawy AA, Kamal HM, Hefni H, Ibrahiem HA (2014) Preparation of chitosan from the shrimp shells and its application for pre-concentration of uranium after cross-linking with epichlorohydrin. Egyp J Pet 23:221–228

    Article  Google Scholar 

  12. El-Sayed AA (2008) Kinetics and thermodynamics of adsorption of trace amount of uranium on activated carbon. Radiochim Acta 96:481–486

    Article  CAS  Google Scholar 

  13. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441

    Article  CAS  PubMed  Google Scholar 

  14. Kütahyalı C, Eral M (2004) Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep Purif Technol 40:109–114

    Article  Google Scholar 

  15. Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094

    Article  CAS  PubMed  Google Scholar 

  16. Liu S, Li S, Zhang H, Wu L, Sun L, Ma J (2016) Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite. J Radioanal Nucl Chem 309:607–614

    CAS  Google Scholar 

  17. Noubactep C, Schoner A, Meinrath G (2006) Mechanism of uranium removal from the aqueous solution by elemental iron. J Hazard Mater 132:202–212

    Article  CAS  PubMed  Google Scholar 

  18. Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178:171–179

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Huang L, Zeng Z, Qiana J, Hua D (2016) Zeta potential-assisted sorption of uranyl tricarbonate complex from aqueous solution by polyamidoxime-functionalized colloidal particles. Phys Chem Chem Phys 18:13026–13032

    Article  CAS  PubMed  Google Scholar 

  20. Wei K, Wang Q, Huang L, Sun L (2016) Amino-functionalized urea-formaldehyde framework mesoporous silica for U(VI) adsorption in wastewater treatment. Ind Eng Chem Res 55(48):12420–12429

    Article  CAS  Google Scholar 

  21. Veliscek-Carolan J, Jolliffe KA, Hanley TL (2013) Selective sorption of actinides by titania nanoparticles covalently functionalized with simple organic ligands. ACS Appl Mater Interf 5(22):11984–11994

    Article  CAS  Google Scholar 

  22. Wen T, Wang X, Wang J, Chen Z, Li J, Hu J, Hayat T, Alsaedi A, Grambow B, Wang X (2016) A strategically designed porous magnetic N-doped Fe/Fe3C@C matrix and its highly efficient uranium(VI) remediation. Inorg Chem Front 3:1227–1235

    Article  CAS  Google Scholar 

  23. Hsi C-KD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Acta 49:1931–1941

    Article  CAS  Google Scholar 

  24. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58:5465–5478

    Article  CAS  Google Scholar 

  25. Shuibo X, Chun Z, Xinghuo Z, Jing Y, Xiaojian Z, Jingsong W (2009) Removal of uranium (VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166

    Article  PubMed  Google Scholar 

  26. Katsoyiannis IA (2007) Carbonate effects and pH-dependence of uranium sorption onto bacteriogenic iron oxides: kinetic and equilibrium studies. J Hazard Mater 139:31–37

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Yang Z, Gao J, Xu K, Gu H, Zhang B, Zhang X, Xu B (2006) A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 128(41):13358–13359

    Article  CAS  PubMed  Google Scholar 

  28. Dodd BM, Tafreshi HV, Tepper GC (2016) Flow-enhanced kinetics of uranyl (UO2) transport into nanoporous silica gel. Mater Des 106:330–335

    Article  CAS  Google Scholar 

  29. Pokrovski GS, Schott J, Farges F, Hazemann J-L (2003) Iron (III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy. Geochim Cosmochimica Acta 67(19):3559–3573

    Article  CAS  Google Scholar 

  30. Al-Anber MA, Al-Momani IF, Zaitoun MA, Al-Qaisi W (2020) Inorganic silica gel functionalized tris(2-aminoethyl)amine moiety for capturing aqueous uranium (VI) ion. J Radioanal Nucl Chem 325:605–623

    Article  CAS  Google Scholar 

  31. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosph 63(7):1165–9169

    Article  CAS  Google Scholar 

  32. Zaitoun MA, Al-Anber MA, Al Momani IF (2020) Sorption and removal aqueous iron(III) ion by tris(2-aminoethyl)amine moiety functionalized silica gel. Inter J Environ Analyt Chem 100(13):1446–1467

    Article  CAS  Google Scholar 

  33. Beganskienė A, Sirutkaitis V, Kurtinaitienė M, Juškėnas R, Kareiva A (2004) FTIR, TEM and NMR investigations of stöber silica nanoparticles. Mater Sci (Medžiagotyra) 10(4):287–290

    Google Scholar 

  34. Zong S, Wei W, Jiang Z, Yan Z, Zhu J, Xie J (2015) Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: skeleton strength and surface modification. RSC Adv 5:55579–55587

    Article  CAS  Google Scholar 

  35. Gilles T, Magali B, Jean G, Rudi C, Catherine H (2009) Hybrid lamellar silica, combined template extraction and hydrophilic silanation. J Colloid Interface Sci 329:120–126

    Article  Google Scholar 

  36. Elkady MF, Hassan HS, Hashim AM (2015) Evaluation of synthesized nano-functionalized silica gel as sorbent agent for copper decontamination from polluted water. Jokull J 65(2):390–417

    Google Scholar 

  37. Michard P, Guibal E, Vincent T, Le Cloirec P (1996) Sorption and desorption of uranyl ions by silica gel: pH, particle size and porosity effects. Microporous Mater 5:309–324

    Article  CAS  Google Scholar 

  38. Pathak PN, Choppin GR (2007) Sorption of uranyl ion on hydrous silica: effects of ionic strength and ethylenediaminetetraacetic acid (EDTA). J Radioanal Nucl Chem 272(1):37–43

    Article  CAS  Google Scholar 

  39. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe. Kung Svenska Vettenskapsakad Handl 24(4):1–39

    Google Scholar 

  40. Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

  41. Ho YS, Ofomaja AE (2006) Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Hazard Mater 129:137–142

    Article  CAS  Google Scholar 

  42. Ho YS, Ng JCY, McKay G (2001) Removal of lead (II) from effluents by sorption on peat using second-order kinetics. Sep Sci Technol 36:241

    Article  CAS  Google Scholar 

  43. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J Am Chem Soc 40(1361–1403):58

    Google Scholar 

  44. Freundlich HMF (1906) Zeitschrift fur Physikalische Chemie (Leipzig) 57A:385

    Google Scholar 

  45. Al Anber MA, Al Adaileh N, Al Momani IF, Al Anber Z (2021) Encapsulation of 4,4,4 trifuoro 1 (2 thienyl) 1,3 butanedione into the silica gel matrix for capturing uranium(VI) ion species. J Radioanal Nucl Chem 329:865–887

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Al-Anber M. would like to thank Mutah University for its financial support through the research grant and facilities (# 343/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Al-Anber.

Additional information

Dedicated congratulation to W. Al-Qaisi on the occasion of her marriage: M. Al-Anber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Anber, M.A., Al-Qaisi, W., Al-Momani, I.F. et al. Utilization of silica gel nanoparticles for selective capturing aqueous uranyl ion. J Radioanal Nucl Chem 332, 4993–5006 (2023). https://doi.org/10.1007/s10967-023-09191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09191-x

Keywords

Navigation