Skip to main content
Log in

Polypyrrole nanoparticles: control of the size and morphology

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A method of controlling the size and morphology of polypyrrole nanoparticles (PPy-NPs) is successfully developed by using the combination of various non-ionic and anionic surfactants and polymerization temperatures during the synthesis. Uniform PPy-NPs are prepared via water-based redox heterogeneous polymerization of pyrrole in the presence of ammonium persulphate as an oxidant. The properties of the prepared materials are evaluated by a transmission electron microscopy and dynamic light scattering in terms of particles morphology, colloidal stability, zeta potential and hydrodynamic size and distribution. Raman, infrared and UV–Vis spectral characteristics of the particles are used to elucidate structural and optical properties of PPy-NPs. The size and morphology of polypyrrole nanoparticles prepared by a polymerization of pyrrole with ammonium persulphate can be controlled by various types and concentrations of surfactants with the hydrophilic-lipophilic balance values between 10‒16 and also by the polymerization temperature. Spectroscopic studies confirm that the surfactants can be washed out from the surface, although some residues remain enclosed inside particles matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang LX, Li XG, Yang YL (2001) React Funct Polym 47:125–139

    CAS  Google Scholar 

  2. Le TH, Kim Y, Yoon H (2017) Polymers (Basel) 9(4):150

    Google Scholar 

  3. Carquigny S, Segut O, Lakard B, Lallemand F, Fievet P (2008) Synth Met 158:453–461

    CAS  Google Scholar 

  4. Ren XZ, Zhao Q, Lui JH, Liang X, Zhang QL, Zhang PX, Luo ZK, Gu Y (2008) J Nanosci Nanotechnol 8(5):2643–2646

    CAS  PubMed  Google Scholar 

  5. Bengoechea M, Boyano I, Miguel O, Cantero I, Ochoteco E, Pomposo J, Grande H (2006) J Power Sources 160:585–591

    CAS  Google Scholar 

  6. Camurlu P (2014) RSC Adv 4:55832–55845

    CAS  Google Scholar 

  7. Hermelin E, Petijean J, Lacroix JC, Chane-Ching KI, Tanguy J, Lacaze PC (2008) Chem Mater 20:4447–4456

    CAS  Google Scholar 

  8. Son WI, Hong JM, Kim BS (2005) Korean J Chem Eng 22(2):285–290

    CAS  Google Scholar 

  9. Ekramul Mahmud HNM, Obidul Huq AK, Yahya RB (2016) RSC Adv 6:14778–14791

    Google Scholar 

  10. Kausaite-Minkstimiene A, Mazeiko V, Ramanaviciene A, Ramanavicius A (2010) Biosens Bioelectron 26:790–797

    CAS  PubMed  Google Scholar 

  11. Ramanaviciene A, Ramanavicius A (2004) Anal Bioanal Chem 379:287–293

    CAS  PubMed  Google Scholar 

  12. Humpolíček P, Kašpárková V, Pacherník J, Stejskal J, Bober P, Capáková Z, Radaszkiewicz KA, Junkar I, Lehocký M (2018) Mater Sci Eng C 91:303–310

    Google Scholar 

  13. Lee JW, Serna F, Schmidt CE (2006) Langmuir 22:9816–9819

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu H, Li W, Cao Y, Guo Y, Kang Y (2018) J Nanopart Res 20:57

    Google Scholar 

  15. Zha Z, Yue X, Ren Q, Dai Z (2013) Adv Mater 25:777–782

    CAS  PubMed  Google Scholar 

  16. Wang S, Lin J, Wang T, Chen X, Huang P (2016) Theranostics 6:2394–2413

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weber J, Beard PC, Bohndiek SE (2016) Nat Methods 13:639–650

    CAS  PubMed  Google Scholar 

  18. Azioune A, Slimane AB, Hamou LA, Pleuvy A, Chehimi MM, Perruchot Ch, Armes SP (2004) Langmuir 20:3350–3356

    CAS  PubMed  Google Scholar 

  19. Lin M, Guo CG, Li J, Zhou D, Liu K, Zhang X, Xu TS, Zhang H, Wang LP, Yang B (2014) ACS Appl Mater Interfaces 6:5860–5868

    CAS  PubMed  Google Scholar 

  20. Diaz AF, Kanazawa KK, Gardini GP (1979) J Chem Soc Chem Commun 14:635–636

    Google Scholar 

  21. Li Y, Dong S (1993) J Electroanal Chem 348:181–188

    CAS  Google Scholar 

  22. Gao Z, Bobacka J, Lewenstam A, Ivaska A (1994) Electrochim Acta 39:755–762

    CAS  Google Scholar 

  23. Myers RE (1986) J Electron Mater 15:61–69

    CAS  Google Scholar 

  24. Armes SP (1987) Synth Met 20:365–371

    CAS  Google Scholar 

  25. Chaudhary V, Sharma S (2019) J Polym Res 26:102

    Google Scholar 

  26. Yang X, Lu Y (2005) Mater Lett 59:2484–2487

    CAS  Google Scholar 

  27. Ramanavicius A, Karabanovas V, Ramanaviciene A, Rotomskis R (2009) J Nanosci Nanotechnol 9:1909–1915

    CAS  PubMed  Google Scholar 

  28. Jang J, Lee K (2002) Chem Commun 2:1098–1099

    Google Scholar 

  29. Thiéblemont JC, Brun A, Marty J, Planche MF, Calo P (1995) Polymer (Guildf) 36:1605–1610

    Google Scholar 

  30. Nishio K, Fujimoto M, Ando O, Ono H, Murayama T (1996) J Appl Electrochem 26:425–429

    CAS  Google Scholar 

  31. Kudoh Y (1996) Synth Met 79:17–22

    CAS  Google Scholar 

  32. Omastová M, Trchová M, Kovářová J, Stejskal J (2003) Synth Met 138:447–455

    Google Scholar 

  33. Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007) Eur Polym J 43:2331–2341

    CAS  Google Scholar 

  34. Ovando-Medina VM, Peralta RD, Mendizábal E, Martínez-Gutiérrez H, Lara-Ceniceros TE, Ledezma-Rodríguez R (2011) Colloid Polym Sci 289:759–765

    CAS  Google Scholar 

  35. Hazarika J, Kumar A (2013) Synth Met 175:155–162

    CAS  Google Scholar 

  36. Leonavicius K, Ramanaviciene A, Ramanavicius A (2011) Langmuir 27:10970–10976

    CAS  PubMed  Google Scholar 

  37. Meng S, Zhang Z, Rouabhia M (2010) Synth Met 160:116–122

    CAS  Google Scholar 

  38. Selvaraj M, Palraj S, Maruthan K, Rajagopal G, Venkatachari G (2009) J Appl Polym Sci 116:1524–1537

    Google Scholar 

  39. Shinde SS, Gund GS, Dubal DP, Jambure SB, Lokhande CD (2014) Electrochim Acta 119:1–10

    CAS  Google Scholar 

  40. Pron A, Wojnar K (1987) Electron Prop Conjug Polym 76:291–293

    CAS  Google Scholar 

  41. Sari B, Gök A, Şahin D (2006) J Appl Polym Sci 101:241–249

    CAS  Google Scholar 

  42. Omastová M, Bober P, Morávková Z, Peřinka N, Kaplanová M, Syrový M, Hromádková J, Trchová M, Stejskal J (2014) Electrochim Acta 122:296–302

    Google Scholar 

  43. DeArmitt C, Armes SP (1993) Langmuir 9(3):652–654

    CAS  Google Scholar 

  44. Samanta D, Meiser JL, Zare RN (2015) Nanoscale 7:9497–9504

    CAS  PubMed  Google Scholar 

  45. Wen J, Tian Y, Mei Z, Wu W, Tian Y (2017) RSC Adv 7:53219–53225

    CAS  Google Scholar 

  46. Woo HY, Jung WG, Ihm DW, Kim JY (2010) Synth Met 160:588–591

    CAS  Google Scholar 

  47. Kim S, Oh WK, Jeong YS, Hong JY, Cho BR, Hanh JS, Jang J (2011) Biomaterials 32:2342–2350

    CAS  PubMed  Google Scholar 

  48. Hong JY, Yoon H, Jang J (2010) Small 6:679–686

    CAS  PubMed  Google Scholar 

  49. Wang Q, Wang J, Lv G, Wang F, Zhou X, Hu J, Wang Q (2014) J Mater Sci 49:3484–3490

    CAS  Google Scholar 

  50. Abbasi AMR, Marsalkova M, Militky J (2013) J Nanoparticles 2013:1–4

    Google Scholar 

  51. O̸degård R, Skotheim TA, Lee HS (1991) J Electrochem Soc 138:2930–2934

    Google Scholar 

  52. Xing S, Zhao G (2007) e-Polymers 7(1)

  53. Hoshina Y, Zaragoza-Contreras EA, Farnood R, Kobayashi T (2012) Polym Bull 68:1689–1705

    CAS  Google Scholar 

  54. Kwon WJ, Suh DH, Chin BD, Yu JW (2008) J Appl Polym Sci 110:1324–1329

    CAS  Google Scholar 

  55. Griffin WC (1955) Am Perfumer Essential Oil Rev 65(5):26–29

    CAS  Google Scholar 

  56. Rowe EL (1965) J Pharm Sci 54:260–264

    CAS  PubMed  Google Scholar 

  57. Holmberg K (2003) Surfactants and polymers in aqueous solution, 2nd edn. Wiley Ltd, Chichester, UK

    Google Scholar 

  58. Linder M, Bäumler M, Stäbler A (2018) Coatings 8(12):469–487

    Google Scholar 

  59. Housaindokht MR, Pour AN (2012) Solid State Sci 14:622–625

    CAS  Google Scholar 

  60. Farn RJ (2006) Chemistry and technology of surfactants. Blackwell Publishing Ltd, Oxford, UK

    Google Scholar 

  61. Gilbert RG, Hess M, Jenkins AD, Jones RG, Kratochvíl P, Stepto RFT (2009) Pure Appl Chem 81:351–353

    CAS  Google Scholar 

  62. Brédas JL, Scott JC, Yakushi K, Street GB (1984) Phys Rev B 30:1023–1025

    Google Scholar 

  63. Foroughi J, Spinks GM, Wallace GG (2009) Synth Met 158:1837–1843

    Google Scholar 

  64. Trchová M, Stejskal J (2018) J Phys Chem A 122:9298–9306

    PubMed  Google Scholar 

  65. Fitch RM (1973) Br Polym J 5:467–483

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Czech Science Foundation (Grant no. 18-05200S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Babič.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paúrová, M., Šeděnková, I., Hromádková, J. et al. Polypyrrole nanoparticles: control of the size and morphology. J Polym Res 27, 366 (2020). https://doi.org/10.1007/s10965-020-02331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02331-x

Keywords

Navigation