Skip to main content
Log in

One-step synthesis of polyaniline–silver cryogels

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyaniline–silver cryogels were prepared by a single-step cryopolymerization with a mixed oxidant consisting of ammonium peroxydisulfate and silver nitrate for in situ incorporation of silver particles. The macroporous structure of the materials and successful introduction of silver microparticles were confirmed by scanning electron microscopy paired with energy-dispersive spectroscopy. Changing of the silver nitrate content in the initial oxidant mixture was shown to be a facile way for controlling silver particles load in the resulting cryogels with a maximum achieved value of 25 wt%. Vibrational spectroscopy showed that the cryogels prepared using higher silver nitrate concentration contained more aniline oligomers which led to the moderate decrease in their conductivity and tensile modulus. Nevertheless, polyaniline–silver cryogels with the highest load of silver had a good conductivity (0.33 S cm–1) and mechanical stability making it a promising material for electrochemical and antibacterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Stejskal J (2013) Conducting polymer-silver composites. Chem Pap 67:814–848

    Article  CAS  Google Scholar 

  2. Wen JY, Tian YH, Hao CX, Wang S, Mei ZP, Wu WZ, Lu JY, Zheng Z, Tian YQ (2019) Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste. J Mater Chem C 7:1188–1197

    Article  CAS  Google Scholar 

  3. Zengin H, Aksin G, Zengin G, Kahraman M, Kilic IH (2019) Preparation and characterization of conductive polyaniline/silver nanocomposite films and their antimicrobial studies. Polym Eng Sci 59:E182–E194

    Article  CAS  Google Scholar 

  4. Liu K, Nasrallah J, Chen LH, Huang LL, Ni YH, Lin S, Wang H (2018) A facile template approach to preparing stable NFC/Ag/polyaniline nanocomposites for imparting multifunctionality to paper. Carbohydr Polym 194:97–102

    Article  CAS  Google Scholar 

  5. Shaban M, Rabia M, Fathallah W, Abd El-Mawgoud N, Mahmoud A, Hussien H, Said O (2018) Preparation and characterization of polyaniline and ag/polyaniline composite nanoporous particles and their antimicrobial activities. J Polym Environ 26:434–442

    Article  CAS  Google Scholar 

  6. Bober P, Humpolicek P, Syrovy T, Capakova Z, Syrova L, Hromadkova J, Stejskal J (2017) Biological properties of printable polyaniline and polyaniline–silver colloidal dispersions stabilized by gelatin. Synth Met 232:52–59

    Article  CAS  Google Scholar 

  7. Wen JJ, Tan XJ, Hu YY, Guo Q, Hong XS (2017) Filtration and electrochemical disinfection performance of PAN/PANI/AgNWs-CC composite nanofiber membrane. Environ Sci Technol 51:6395–6403

    Article  CAS  Google Scholar 

  8. Kumar V, Gupta RK, Gundampati RK, Singh DK, Mohan S, Hasan SH, Malviya M (2018) Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle-reduced graphene oxide-polyaniline fabricated electrochemical sensor. RSC Adv 8:619–631

    Article  Google Scholar 

  9. Chao Z, Govindaraju S, Giribabu K, Huh YS, Yun K (2017) AgNWs-PANI nanocomposite based electrochemical sensor for detection of 4-nitrophenol. Sens Actuators, B 252:616–623

    Article  Google Scholar 

  10. Zhou YG, Maharubin S, Tran P, Reid T, Tan GZ (2018) Anti-biofilm AgNP-polyaniline-polysulfone composite membrane activated by low intensity direct/alternating current. Environ Sci Water Res Technol 4:1511–1521

    Article  CAS  Google Scholar 

  11. Zhao S, Huang LC, Tong TZ, Zhang W, Wang Z, Wang JX, Wang SC (2017) Antifouling and antibacterial behavior of polyethersulfone membrane incorporating polyaniline@silver nanocomposites. Environ Sci: Water Res Technol 3:710–719

    CAS  Google Scholar 

  12. Dolatkhah A, Jani P, Wilson LD (2018) Redox-responsive polymer template as an advanced multifunctional catalyst support for silver nanoparticles. Langmuir 34:10560–10568

    Article  CAS  Google Scholar 

  13. Stamenovic U, Gavrilov N, Pasti IA, Otonicar M, Ciric-Marjanovic G, Skapin SD, Mitric M, Vodnik V (2018) One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction. Electrochim Acta 281:549–561

    Article  CAS  Google Scholar 

  14. Yang Q (2018) Removal and reuse of Ag nanoparticles by magnetic polyaniline/Fe3O4 nanofibers. J Mater Sci 53:8901–8908

    Article  CAS  Google Scholar 

  15. Pattananuwat P, Thammasaroj P, Nuanwat W, Qin JQ, Potiyaraj P (2018) One-pot method to synthesis polyaniline wrapped graphene aerogel/silver nanoparticle composites for solid-state supercapacitor devices. Mater Lett 217:104–108

    Article  CAS  Google Scholar 

  16. Tang L, Duan F, Chen MQ (2017) Green synthesis of silver nanoparticles embedded in polyaniline nanofibers via vitamin C for supercapacitor applications. J Mater Sci Mater Electron 28:7769–7777

    Article  CAS  Google Scholar 

  17. Trchova M, Stejskal J (2010) The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres. Synth Met 160:1479–1486

    Article  CAS  Google Scholar 

  18. Bober P, Stejskal J, Trchova M, Prokes J (2011) Polyaniline–silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polym 52:5947–5952

    Article  CAS  Google Scholar 

  19. Bober P, Trchova M, Kovarova J, Acharya U, Hromadkova J, Stejskal J (2018) Reduction of silver ions to silver with polyaniline/poly(vinyl alcohol) cryogels and aerogels. Chem Pap 72:1619–1628

    Article  CAS  Google Scholar 

  20. Stejskal J, Bober P, Trchová M, Kovalcik A, Hodan J, Hromádková J, Prokeš J (2017) Polyaniline cryogels supported with poly(vinyl alcohol): Soft and conducting. Macromolecules 50:972–978

    Article  CAS  Google Scholar 

  21. Henderson TMA, Ladewig K, Haylock DN, McLean KM, O'Connor AJ (2013) Cryogels for biomedical applications. J Mater Chem B 1:2682–2695

    Article  CAS  Google Scholar 

  22. Strawhecker KE, Manias E (2000) Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem Mater 12:2943–2949

    Article  CAS  Google Scholar 

  23. Lee D, Char K (2002) Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites. Polym Degrad Stab 75:555–560

    Article  CAS  Google Scholar 

  24. Trchová M, Morávková Z, Šeděnková I, Stejskal J (2012) Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chem Pap 66:415–445

    Article  Google Scholar 

  25. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548

    Article  CAS  Google Scholar 

  26. Stejskal J, Trchova M (2012) Aniline oligomers versus polyaniline. Polym Int 61:240–251

    Article  CAS  Google Scholar 

  27. Javadi HHS, Treat SP, Ginder JM, Wolf JF, Epstein AJ (1990) Aniline tetramers - comparison with aniline octamer and polyaniline. J Phys Chem Solids 51:107–112

    Article  CAS  Google Scholar 

  28. Morávková Z, Dmitrieva E (2017) Structural changes in polyaniline near the middle oxidation peak studied by in situ Raman spectroelectrochemistry. J Raman Spectrosc 48:1229–1234

    Article  Google Scholar 

  29. Boyer MI, Quillard S, Rebourt E, Louarn G, Buisson JP, Monkman A, Lefrant S (1998) Vibrational analysis of polyaniline: a model compound approach. J Phys Chem B 102:7382–7392

    Article  CAS  Google Scholar 

  30. de Santana H, Quillard S, Fayad E, Louarn G (2006) In situ UV–vis and Raman spectroscopic studies of the electrochemical behavior of N, N′-diphenyl-1,4-phenylenediamine. Synth Met 156:81–85

    Article  Google Scholar 

  31. Silva CHB, Ferreira DC, Ando RA, Temperini MLA (2012) Aniline-1,4-benzoquinone as a model system for the characterization of products from aniline oligomerization in low acidic media. Chem Phys Lett 551:130–133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Czech Science Foundation (18-04669S) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrycja Bober.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milakin, K.A., Morávková, Z., Acharya, U. et al. One-step synthesis of polyaniline–silver cryogels. J Mater Sci 55, 10427–10434 (2020). https://doi.org/10.1007/s10853-020-04719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04719-y

Navigation