Skip to main content
Log in

Microalgae as an aquaculture feed produced in a short light-path annular column photobioreactor

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In this work, four microalgae species (Chlorella vulgaris, Trachydiscus minutus, Monodopsis sp., and Monoraphidium sp.) were selected and grown in a novel, 30 L short-light path annular-column photobioreactor (AC-PBR). The aim was to test the microalgae growth on a pilot scale and evaluate the potential use as an alternative fish feed in hatcheries based on the content and composition of fatty acids. All microalgae species reached a high biomass density between 3.65 and 5.32 g DW L−1 during a 14-day trial. The highest growth rate of 0.25 ± 0.05 d−1 was calculated for Trachydiscus culture. The highest total content of fatty acids (TFA) was determined for Monodopsis and Trachydiscus biomass as the concentration reached 74.5 ± 6.3 and 72.4 ± 7.6 mg g−1 DW, respectively. These two species contained mostly eicosapentaenoic acid (EPA; C20:5n3), the crucial FA for carnivorous fish whose concentration reached the value of 25.3 ± 0.9% and 31.9 ± 2.0% of TFA for Monodopsis and Trachydiscus, respectively. A high amount of linoleic acid (LA; C18:2n6), another important FA for freshwater aquafeed, was found in Chlorella biomass up to the concentration of 21.9 ± 1.5% of TFA. The present results suggest the feasibility of in-house cultivation of selected microalgae species as a quality live feed source for fish hatcheries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Acién FG, Molina E, Reis A, Torzillo G, Zittelli GC, Sepulveda C, Masojidek J (2017) Photobioreactors for the production of microalgae. In: Munoz R, Gonzalez-Fernandez C (eds) Microalgae-based biofuels and bioproducts: from feedstock cultivation to end-products. Woodhead Publishing, Duxford pp 1–44

  • Alcaraz R, Hernández-Contreras A, Iglesias P, Hernández MD (2021) Effect of the inclusion of microalgae on the physical properties of extruded feed for gilthead seabream (Sparus aurata L.). Algal Res 53:102167

  • Allen MM, Stanier RY (1968) Growth and division of some unicellular blue-green algae. J Gen Microbiol 51:199–202

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Mishra G (2019) Biochemical modulation of Monodopsis subterranea (Eustigmatophyceae) by auxin and cytokinin enhances eicosapentaenoic acid productivity. J Appl Phycol 31:3441–3452

    Article  CAS  Google Scholar 

  • Arora S, Mishra G (2021) Effect of gibberellin, methyl jasmonate and myoinositol on biomass and eicosapentaenoic acid productivities in the eustigmatophyte Monodopsis subterranea CCALA 830. J Appl Phycol 33:287–299

    Article  CAS  Google Scholar 

  • Babaei A, Ranglová K, Malapascua JR, Torzillo G, Shayegan J, Silva AM (2020) Photobiochemical changes in Chlorella g120 culture during trophic conversion (metabolic pathway shift) from heterotrophic to phototrophic growth regime. J Appl Phycol 32:2807–2818

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 312–351

  • Brown MR (2002) Nutritional value and use of microalgae in aquaculture. Avances en Nutrición Acuícola VI Memorias del VI Simposium Internacional de Nutrición Acuícola, Cancun, Mexico pp 281–292

  • Cahu C, Zambonino Infante J, Escaffre A-M, Bergot P, Kaushik S (1998) Preliminary results on sea bass (Dicentrarchus labrax) larvae rearing with compound diet from first feeding. Comparison with carp (Cyprinus carpio) larvae. Aquaculture 169:1–7

  • Calder PC (2006) n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505S-1519S

    Article  CAS  PubMed  Google Scholar 

  • Cañedo JCG, Lizárraga GLL (2016) Considerations for photobioreactor design and operation for mass cultivation of microalgae. In: Thajuddin N, Dhanasekaran D (eds) Algae - Organisms for Imminent Biotechnology. InTech, Riejeka

  • Carneiro WF, Castro TFD, Orlando TM, Meurer F, Paula DadJ, Virote BdCR, Vianna ARdCB, Murgas LDS (2020) Replacing fish meal by Chlorella sp. meal: effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture 528:735612

  • Cepák V, Přibyl P, Kohoutková J, Kaštánek P (2014) Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. J Appl Phycol 26:181–190

    Article  Google Scholar 

  • Chen F, Leng Y, Lu Q, Zhou W (2021) The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Res 60:102541

  • Chini Zittelli G, Rodolfi L, Tredici MR (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J Appl Phycol 15:107–114

  • Conceição D, Lopes RG, Derner RB, Cella H, do Carmo APB, Montes D’Oca MG, Petersen R, Passos MF, Vargas JVC, Galli-Terasawa LV, Kava V (2020) The effect of light intensity on the production and accumulation of pigments and fatty acids in Phaeodactylum tricornutum. J Appl Phycol 32:1017–1025

  • Egbo M, Okoani A, Okoh I (2018) Photobioreactors for microalgae cultivation – An Overview. Int J Sci Eng Res 9:65–74

    Google Scholar 

  • Figueiredo J, Lin J, Anto J, Narciso L (2012) The consumption of DHA during embryogenesis as an indicative of the need to supply DHA during early larval development: a review. J Aquac Res Dev 3:5

  • Fujii K, Nakashima H, Hashidzume Y, Uchiyama T, Mishiro K, Kadota Y (2010) Potential use of the astaxanthin-producing microalga, Monoraphidium sp. GK12, as a functional aquafeed for prawns. J Appl Phycol 22:363–369

  • Gong Q, Feng Y, Kang L, Luo M, Yang J (2014) Effects of light and pH on cell density of Chlorella vulgaris. Energy Procedia 61:2012–2015

  • Han P, Lu Q, Fan L, Zhou W (2019) A review on the use of microalgae for sustainable aquaculture. Appl Sci 9:2377

  • Hemaiswarya S, Raja R, Ravi Kumar R, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746

  • Hodar A, Vasava R, Mahavadiya D, Joshi N (2020) Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: a review. J Exp Zool India 23:13–21

    Google Scholar 

  • Hu G, Fan Y, Zhang L, Yuan C, Wang J, Li W, Hu Q, Li F (2013) Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp mutant induced by heavy carbon ions. PLoS ONE 8:e0060700

  • Iliev I, Petkov G, Lukavský J, Furnadzhieva S, Andreeva R, Bankova V (2010) The alga Trachydiscus minutus (Pseudostaurastrum minutum): Growth and composition. Gen Appl Plant Physiol 36:222–231

  • Jones SW, Karpol A, Friedman S, Maru BT, Tracy BP (2020) Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr Opin Biotechnol 61:189–197

    Article  CAS  PubMed  Google Scholar 

  • Kaparapu J (2018) Application of microalgae in aquaculture. Phykos 48:21–26

    Google Scholar 

  • Kathrika S, Thasnim P, Harilal C (2018) Growth standardization studies on Monoraphidium contortum cultured under pH specific conditions in Bolds Basal medium. J Algal Biomass Utiliz 9:19–25

  • Lakatos GE, Ranglová K, Bárcenas-Pérez D, Grivalský T, Manoel JC, Mylenko M, Cheel J, Nyári J, Wirth R, Kovács KL, Kopecký J, Nedbalová L, Masojídek J (2023) Cold-adapted culturing of the microalga Monoraphidium sp. in thin-layer raceway pond for biomass production. Algal Res 69:102926

  • Legrand J, Artu A, Pruvost J (2021) A review on photobioreactor design and modelling for microalgae production. Reaction Chem Eng 6:1134–1151

  • Lenihan-Geels G, Bishop K, Ferguson L (2013) Alternative sources of omega-3fats: Can we find a sustainable substitute for fish? Nutrients 5:1301–1315

  • Li J, Fan Z, Qu M, Qiao X, Sun J, Bai D, Cheng Z (2015) Applications of microalgae as feed additives in aquaculture. In: Proceedings of the 2015 International Symposium on Energy Science and Chemical Engineering. Atlantis Press, Paris, France

  • Lukavský J (2012) Trachydiscus minutus - a new algal EPA producer. In: Krueger D, Meyer H (eds) Algae: Ecology, economic uses and environmental impact. Nova Publishers,  pp 77–104

  • Malapascua JRF, Jerez CG, Sergejevová M, Figueroa F, Masojidek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: Application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140

    Article  Google Scholar 

  • Malapascua JR, Ranglová K, Masojídek J (2019) Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED‑illuminated photobioreactor. Photosynthetica 57:103–112

  • Masojídek J, Vonshak A, Torzillo G (2010) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Springer, Netherlands, Dordrecht, pp 277–292

    Chapter  Google Scholar 

  • Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317

    Article  PubMed  Google Scholar 

  • Masojídek J, Ranglová K, Lakatos GE,  Benavides AMS, Torzillo G (2021) Variables governing photosynthesis and growth in microalgae mass cultures. Processes 9:820

    Article  Google Scholar 

  • Masojídek J, Torzillo G (2014) Mass cultivation of freshwater microalgae. In: Reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09373-8

  • Mejri SC, Tremblay R, Audet C, Wills PS, Riche M (2021) Essential fatty acid requirements in tropical and cold-water marine fish larvae and juveniles. Front Mar Sci 8:680003

  • Mishra B, Tiwari A, Mahmoud AED (2023) Microalgal potential for sustainable aquaculture applications: bioremediation, biocontrol, aquafeed. Clean Technol Environ Policy 25:675–687

  • Montoya-Camacho N, Marquez-Ríos E, Castillo-Yáñez FJ, Cárdenas López JL, López-Elías JA, Ruíz-Cruz S, Jiménez-Ruíz EI, Rivas-Vega ME, Ocaño-Higuera VM (2019) Advances in the use of alternative protein sources for tilapia feeding. Rev Aquac 11:515–526

    Article  Google Scholar 

  • De Mooij T, Rajabali Z, van Buren L, Wijffels RH, Janssen M (2017) Effect of photoacclimation on microalgae mass culture productivity. Algal Res 22:56–67

    Article  Google Scholar 

  • Nagappan S, Das P, AbdulQuadir M,  Thaher M, Khan S, Mahata C, Al-Jabri H, Vatland AK, Kumar G (2021) Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol 341:1–20

    Article  CAS  PubMed  Google Scholar 

  • Nedbalová L, Mihál M, Kvíderová J, Procházková L, Řezanka T, Elster J (2017) Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Extremophiles 21:187–200

    Article  PubMed  Google Scholar 

  • Norambuena F, Hermon K, Skrzypczyk V, Emery JA, Sharon Y, Beard A, Turchini GM (2015) Algae in fish feed: Performances and fatty acid metabolism in juvenile atlantic salmon. PLoS ONE 10:e0124042

    Article  Google Scholar 

  • Petkov G, Garcia G (2007) Which are fatty acids of the green alga Chlorella? Biochem Syst Ecol 35:281–285

    Article  CAS  Google Scholar 

  • Pilátová J (2013) The potential use of the Eustigmatophyceae in the production of biofuels. Thesis, Charles University in Prague

  • Ranglová K, Lakatos GE, Manoel JAC, Lakatos GE, Masojidek J (2019) Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiol 64:615–625

    Article  Google Scholar 

  • Ranglová K, Bureš M, Manoel JC, Grivalski T, Masojidek J (2022) Efficient microalgae feed production for fish hatcheries using an annular column photobioreactor characterized by a short light path and central LED illumination. J Appl Phycol 34:31–41

    Article  Google Scholar 

  • Renaud SM, Thinh L-V, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Robert R, Trintignac P (1997) Substitutes for live microalgae in mariculture: a review. Aquat Living Resour 10:315–327

    Article  Google Scholar 

  • Safi C, Charton M, Pignolet O, Silvestre F, Vaca-Garcia C, Pontalier P-Y (2013) Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J Appl Phycol 25:523–529

    Article  CAS  Google Scholar 

  • Seong T, Uno Y, Kitagima R, Kabeya N, Haga Y, Satoh S (2021) Microalgae as main ingredient for fish feed: non-fish meal and non-fish oil diet development for red sea bream, Pagrus major, by blending of microalgae Nannochloropsis, Chlorella and Schizochytrium. Aquac Res 52:6025–6036

  • Sergejevová M, Malapascua JR, Kopecký J, Masojídek J (2015) Photobioreactors with internal illumination. In: Prokop A, Bajpai RK, Zappi ME (eds) Algal Biorefineries. Springer , Cham, pp 213–236

    Chapter  Google Scholar 

  • Shah MR, Lutzu GA, Alam A, Sarker P, Kabir Chowdhury MA, Parsaeimehr A, Liang Y, Daroch M (2018) Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol 30:197–213

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Taşbozan O, Gökçe MA (2017) Fatty acids in fish. In: Catala A (ed) Fatty Acids. IntechOpen, Riejeka

  • Towers L (2013) The use of algae in fish feeds as alternatives to fishmeal. https://thefishsite.com/articles/the-use-of-algae-in-fish-feeds-as-alternatives-to-fishmeal. Accessed 09 Jan 2013

  • Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang B-I, Sim SJ, Kim SH, Pandey A (2022) Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem Rev. https://doi.org/10.1007/s11101-021-09784-y

  • van der Meeren T, Olsen RE, Hamre K, Fyhn HJ (2008) Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274:375–397

    Article  Google Scholar 

  • Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731–740

  • Yanes-Roca C, Mráz J, Born-Torrijos A, Vesely L, Malinovskyi O, Policar T (2018) Introduction of rotifers (Brachionus plicatilis) during pikeperch first feeding. Aquaculture 497:260–268

  • Yanes-Roca C, Holzer A, Mraz J, Holzer AS, Imentai A, Policar T (2020) Improvements on live feed enrichments for pikeperch (Sander lucioperca) larval culture. Animals 10:401

  • Zarmi Y, Bel G, Aflalo C (2013) Theoretical analysis of culture growth in flat-plate bioreactors: The essential role of timescales. In: Richmond A, Hu Q (Eds) Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd Edn. Wiley-Blackwell, Oxford, pp 205–224

    Chapter  Google Scholar 

  • Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd Edn. Wiley-Blackwell, Oxford, UK, pp 225–266

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Linda Nedbalová and Ms. Alena Lukešová for providing microalgae species, then thank Dr. Martin Lukeš for technical assistance during analysis and Ms. Soňa Pekařová for technical assistance during experiments. The authors also thank Mr. Jason Dean for language correction.

Funding

This work was supported by Program INTERREG V-A Austria – Czech Republic, project ATCZ221 „Algae4Fish".

Author information

Authors and Affiliations

Authors

Contributions

Karolína Štěrbová contributed to conceptualization, methodology, data curation, formal analysis and writing—original draft preparation and reviewing and editing. João Câmara Manoel contributed to data curation. Gergely Ernő Lakatos – contributed to data curation. Tomáš Grivalský – contributed to data curation. Jiří Masojídek contributed to technical design, supervision, writing – reviewing and editing.

Corresponding author

Correspondence to Karolína Štěrbová.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 182 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Štěrbová, K., Manoel, J.C., Lakatos, G.E. et al. Microalgae as an aquaculture feed produced in a short light-path annular column photobioreactor. J Appl Phycol 35, 603–611 (2023). https://doi.org/10.1007/s10811-023-02928-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-02928-x

Keywords

Navigation